List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9467052/publications.pdf Version: 2024-02-01

7VI KELMAN

#	Article	IF	CITATIONS
1	Creation and filtering of a recurrent spectral library of CHO cell metabolites and media components. Biotechnology and Bioengineering, 2021, 118, 1491-1510.	3.3	2
2	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	19.0	198
3	Preface. Methods in Enzymology, 2021, 659, xix-xxiii.	1.0	0
4	Preface. Methods in Enzymology, 2021, 660, xvii-xxii.	1.0	0
5	Strategies for Development of a Next-Generation Protein Sequencing Platform. Trends in Biochemical Sciences, 2020, 45, 76-89.	7.5	49
6	A ClpS-based N-terminal amino acid binding reagent with improved thermostability and selectivity. Biochemical Engineering Journal, 2020, 154, 107438.	3.6	5
7	Leveraging nature's biomolecular designs in next-generation protein sequencing reagent development. Applied Microbiology and Biotechnology, 2020, 104, 7261-7271.	3.6	5
8	Unwinding 20 Years of the Archaeal Minichromosome Maintenance Helicase. Journal of Bacteriology, 2020, 202, .	2.2	9
9	Characterization of the internal translation initiation region in monoclonal antibodies expressed in Escherichia coli. Journal of Biological Chemistry, 2019, 294, 18046-18056.	3.4	8
10	Engineering ClpS for selective and enhanced N-terminal amino acid binding. Applied Microbiology and Biotechnology, 2019, 103, 2621-2633.	3.6	16
11	Do Archaea Need an Origin of Replication?. Trends in Microbiology, 2018, 26, 172-174.	7.7	4
12	DNA Sliding Clamps as Therapeutic Targets. Frontiers in Molecular Biosciences, 2018, 5, 87.	3.5	37
13	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	2.3	47
14	Heterologous recombinant expression of non-originator NISTmAb. MAbs, 2018, 10, 922-933.	5.2	4
15	Platform development for expression and purification of stable isotope labeled monoclonal antibodies in <i>Escherichia coli</i> . MAbs, 2018, 10, 1-11.	5.2	8
16	Archaeal DNA replication and repair: new genetic, biophysical and molecular tools for discovering and characterizing enzymes, pathways and mechanisms. FEMS Microbiology Reviews, 2018, 42, 477-488.	8.6	19
17	The GAN Exonuclease or the Flap Endonuclease Fen1 and RNase HII Are Necessary for Viability of Thermococcus kodakarensis. Journal of Bacteriology, 2017, 199, .	2.2	18
18	Genome Replication in Thermococcus kodakarensis Independent of Cdc6 and an Origin of Replication. Frontiers in Microbiology, 2017, 8, 2084.	3.5	24

#	Article	IF	CITATIONS
19	High-temperature single-molecule kinetic analysis of thermophilic archaeal MCM helicases. Nucleic Acids Research, 2016, 44, 8764-8771.	14.5	9
20	A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp. Nucleic Acids Research, 2016, 44, 6232-6241.	14.5	11
21	Protein Labeling in Escherichia coli with 2H, 13C, and 15N. Methods in Enzymology, 2015, 565, 27-44.	1.0	11
22	lsotopic Labeling of Proteins in Halobacterium salinarum. Methods in Enzymology, 2015, 565, 147-165.	1.0	3
23	DNA polymerases in biotechnology. Frontiers in Microbiology, 2014, 5, 659.	3.5	20
24	Archaeal DNA Replication. Annual Review of Genetics, 2014, 48, 71-97.	7.6	55
25	The solution structure of full-length dodecameric MCM by SANS and molecular modeling. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2364-2374.	2.6	8
26	A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein. Nucleic Acids Research, 2014, 42, 5776-5789.	14.5	13
27	Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability. Extremophiles, 2013, 17, 453-461.	2.3	13
28	Archaeal DNA Polymerase D but Not DNA Polymerase B Is Required for Genome Replication in Thermococcus kodakarensis. Journal of Bacteriology, 2013, 195, 2322-2328.	2.2	70
29	Characterization of DNA Primase Complex Isolated from the Archaeon, Thermococcus kodakaraensis. Journal of Biological Chemistry, 2012, 287, 16209-16219.	3.4	31
30	The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biology Direct, 2012, 7, 7.	4.6	80
31	The archaeal PCNA proteins. Biochemical Society Transactions, 2011, 39, 20-24.	3.4	38
32	Thermococcus kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids Research, 2011, 39, 9671-9680.	14.5	40
33	Crystal structures of two active proliferating cell nuclear antigens (PCNAs) encoded by <i>Thermococcus kodakaraensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2711-2716.	7.1	29
34	Affinity Purification of an Archaeal DNA Replication Protein Network. MBio, 2010, 1, .	4.1	79
35	The Methanothermobacter thermautotrophicus MCM Helicase Is Active as a Hexameric Ring. Journal of Biological Chemistry, 2009, 284, 540-546.	3.4	23
36	Unwinding the structure and function of the archaeal MCM helicase. Molecular Microbiology, 2009, 72, 286-296.	2.5	67

#	Article	IF	CITATIONS
37	How is the archaeal MCM helicase assembled at the origin? Possible mechanisms. Biochemical Society Transactions, 2009, 37, 7-11.	3.4	10
38	Mutations of TCN1 Cause Transcobalamin I Deficiency with Low Serum Cobalamin Levels That Are Indistinguishable From Cobalamin Deficiency Blood, 2009, 114, 1989-1989.	1.4	2
39	Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase. EMBO Journal, 2008, 27, 2250-2258.	7.8	41
40	The Methanothermobacter thermautotrophicus Cdc6-2 Protein, the Putative Helicase Loader, Dissociates the Minichromosome Maintenance Helicase. Journal of Bacteriology, 2008, 190, 4091-4094.	2.2	12
41	Coupling of DNA binding and helicase activity is mediated by a conserved loop in the MCM protein. Nucleic Acids Research, 2008, 36, 1309-1320.	14.5	42
42	Archaeal Minichromosome Maintenance (MCM) Helicase Can Unwind DNA Bound by Archaeal Histones and Transcription Factors. Journal of Biological Chemistry, 2007, 282, 4908-4915.	3.4	18
43	Archaeal MCM has separable processivity, substrate choice and helicase domains. Nucleic Acids Research, 2007, 35, 988-998.	14.5	75
44	Stimulation of MCM helicase activity by a Cdc6 protein in the archaeon Thermoplasma acidophilum. Nucleic Acids Research, 2006, 34, 6337-6344.	14.5	33
45	The Replicative Helicases of Bacteria, Archaea, and Eukarya Can Unwind RNA-DNA Hybrid Substrates. Journal of Biological Chemistry, 2006, 281, 26914-26921.	3.4	42
46	Structural Polymorphism of Methanothermobacter thermautotrophicus MCM. Journal of Molecular Biology, 2005, 346, 389-394.	4.2	66
47	Archaeal DNA replication and repair. Current Opinion in Microbiology, 2005, 8, 669-676.	5.1	134
48	Biochemical Characterization of the Methanothermobacter thermautotrophicus Minichromosome Maintenance (MCM) Helicase N-terminal Domains. Journal of Biological Chemistry, 2004, 279, 28358-28366.	3.4	55
49	Multiple origins of replication in archaea. Trends in Microbiology, 2004, 12, 399-401.	7.7	43
50	Archaea: an archetype for replication initiation studies?. Molecular Microbiology, 2003, 48, 605-615.	2.5	83
51	Structural lessons in DNA replication from the third domain of life. Nature Structural and Molecular Biology, 2003, 10, 148-150.	8.2	27
52	The diverse spectrum of sliding clamp interacting proteins. FEBS Letters, 2003, 546, 167-172.	2.8	95
53	Archaeal DNA Replication: Eukaryal Proteins in a Bacterial Context. Annual Review of Microbiology, 2003, 57, 487-516.	7.3	136
54	Substrate Requirements for Duplex DNA Translocation by the Eukaryal and Archaeal Minichromosome Maintenance Helicases. Journal of Biological Chemistry, 2003, 278, 49053-49062.	3.4	64

#	Article	IF	CITATIONS
55	Regulation of Minichromosome Maintenance Helicase Activity by Cdc6. Journal of Biological Chemistry, 2003, 278, 38059-38067.	3.4	57
56	The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Reports, 2002, 3, 792-797.	4.5	89
57	The Zinc Finger Domain of the Archaeal Minichromosome Maintenance Protein Is Required for Helicase Activity. Journal of Biological Chemistry, 2001, 276, 49371-49377.	3.4	59
58	The replication origin of archaea is finally revealed. Trends in Biochemical Sciences, 2000, 25, 521-523.	7.5	23
59	A Unique Organization of the Protein Subunits of the DNA Polymerase Clamp Loader in the Archaeon Methanobacterium thermoautotrophicum ΔH. Journal of Biological Chemistry, 2000, 275, 7327-7336.	3.4	61
60	Protein–PCNA interactions: a DNA-scanning mechanism?. Trends in Biochemical Sciences, 1998, 23, 236-238.	7.5	147
61	The Influence of the Proliferating Cell Nuclear Antigen-interacting Domain of p21 on DNA Synthesis Catalyzed by the Human and Saccharomyces cerevisiae Polymerase δHoloenzymes. Journal of Biological Chemistry, 1997, 272, 2373-2381.	3.4	52
62	Structure of the C-Terminal Region of p21WAF1/CIP1 Complexed with Human PCNA. Cell, 1996, 87, 297-306.	28.9	753
63	Clamp loading, unloading and intrinsic stability of the PCNA, β and gp45 sliding clamps of human, E. coli and T4 replicases. Genes To Cells, 1996, 1, 101-113.	1.2	207
64	Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Research, 1995, 23, 3613-3620.	14.5	165