Yifan Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9465580/publications.pdf

Version: 2024-02-01

331670 434195 1,923 31 21 31 citations h-index g-index papers 32 32 32 3798 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Defect-mediated ripening of core-shell nanostructures. Nature Communications, 2022, 13, 2211.	12.8	17
2	A new route of synthesizing atomically thin 2D materials embedded in bulk oxides. Journal of Applied Physics, 2021, 130, 035302.	2.5	0
3	Flat Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS ₂ -WSe ₂ Heterobilayers. ACS Nano, 2020, 14, 7564-7573.	14.6	38
4	Alloying conducting channels for reliable neuromorphic computing. Nature Nanotechnology, 2020, 15, 574-579.	31.5	160
5	Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nature Nanotechnology, 2020, 15, 272-276.	31.5	71
6	Pocketlike Active Site of Rh ₁ /MoS ₂ Single-Atom Catalyst for Selective Crotonaldehyde Hydrogenation. Journal of the American Chemical Society, 2019, 141, 19289-19295.	13.7	141
7	Ligand-induced reduction concerted with coating by atomic layer deposition on the example of TiO ₂ -coated magnetite nanoparticles. Chemical Science, 2019, 10, 2171-2178.	7.4	11
8	Higher superconducting transition temperature by breaking the universal pressure relation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2004-2008.	7.1	39
9	Stable and Active Oxidation Catalysis by Cooperative Lattice Oxygen Redox on SmMn ₂ O ₅ Mullite Surface. Journal of the American Chemical Society, 2019, 141, 10722-10728.	13.7	64
10	WSe ₂ homojunctions and quantum dots created by patterned hydrogenation of epitaxial graphene substrates. 2D Materials, 2019, 6, 021001.	4.4	7
11	Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS ₂ –WSe ₂ Heterobilayers. Nano Letters, 2018, 18, 1849-1855.	9.1	91
12	Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. ACS Nano, 2018, 12, 965-975.	14.6	172
13	Ab Initio Study on Surface Segregation and Anisotropy of Ni-Rich LiNi _{1–2<i>y</i>} Co _{<i>y</i>} Mn _{<i>y</i>} O ₂ (NCM) (<i>y</i> ≠0.1) Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 6673-6680.	8.0	50
14	Polarity governs atomic interaction through two-dimensional materials. Nature Materials, 2018, 17, 999-1004.	27.5	182
15	Dislocation driven spiral and non-spiral growth in layered chalcogenides. Nanoscale, 2018, 10, 15023-15034.	5.6	24
16	Quantum Transport and Band Structure Evolution under High Magnetic Field in Few-Layer Tellurene. Nano Letters, 2018, 18, 5760-5767.	9.1	60
17	Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Materials, 2017, 4, 015026.	4.4	160
18	Characteristics of Interlayer Tunneling Field-Effect Transistors Computed by a "DFT-Bardeen―Method. Journal of Electronic Materials, 2017, 46, 1378-1389.	2.2	5

#	Article	IF	CITATIONS
19	First principles study of the Mn-doping effect on the physical and chemical properties of mullite-family Al ₂ SiO ₅ . Physical Chemistry Chemical Physics, 2017, 19, 24991-25001.	2.8	5
20	Nucleation and growth of WSe ₂ : enabling large grain transition metal dichalcogenides. 2D Materials, 2017, 4, 045019.	4.4	96
21	A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides. Scientific Reports, 2017, 7, 2977.	3.3	72
22	Site-dependent multicomponent doping strategy for Ni-rich LiNi $<$ sub $>$ 1 \hat{a}^2 2 $<$ 1 \hat{s} ub $>$ Co $<$ sub $>$ 9 $<$ 1 \hat{s} ub $>$ 1 \hat{s}^2 2 $<$ 1 \hat{s} ub $>$ 10 $<$ 10 \hat{s} ub $>$ 10 $$	10.3	119
23	Charge-transfer modified embedded atom method dynamic charge potential for Li–Co–O system. Journal of Physics Condensed Matter, 2017, 29, 475903.	1.8	3
24	Chemisorption of a hydrogen adatom on metal doped \hat{l}_{\pm} -Zr (0Â0Â0Â1) surfaces in a vacuum and an implicit solvation environment. Nuclear Materials and Energy, 2017, 13, 28-34.	1.3	6
25	Obstacles toward unity efficiency of LiNi 1-2x Co x Mn x O 2 ($x\hat{A}=\hat{A}0\hat{A}\hat{a}^{1}/4\hat{A}1/3$) (NCM) cathode materials: Insights from ab initio calculations. Journal of Power Sources, 2017, 340, 217-228.	7.8	57
26	Controlling nucleation of monolayer WSe 2 during metal-organic chemical vapor deposition growth. 2D Materials, 2016, 3, 025015.	4.4	42
27	Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures. Nanoscale, 2016, 8, 8947-8954.	5.6	21
28	Charge Mediated Reversible Metal–Insulator Transition in Monolayer MoTe ₂ and W _{<i>x</i>>} Mo _{1–<i>x</i>} Te ₂ Alloy. ACS Nano, 2016, 10, 7370-7375.	14.6	133
29	First principles kinetic Monte Carlo study on the growth patterns of WSe ₂ monolayer. 2D Materials, 2016, 3, 025029.	4.4	59
30	Theoretical Demonstration of the Ionic Barristor. Nano Letters, 2016, 16, 2090-2095.	9.1	9
31	Chemical and physical adsorption of a H2O molecule on a metal doped Zr (0001) surface. Journal of Nuclear Materials, 2014, 452, 493-499.	2.7	6