
Martins Zaumanis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9464355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Construction and Building Materials, 2014, 71, 538-550.	7.2	343
2	100% recycled hot mix asphalt: A review and analysis. Resources, Conservation and Recycling, 2014, 92, 230-245.	10.8	275
3	Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art. International Journal of Pavement Engineering, 2015, 16, 39-55.	4.4	265
4	Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel, 2014, 135, 162-171.	6.4	250
5	Evaluation of Rejuvenator's Effectiveness with Conventional Mix Testing for 100% Reclaimed Asphalt Pavement Mixtures. Transportation Research Record, 2013, 2370, 17-25.	1.9	191
6	Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100Â% recycled asphalt. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2475-2488.	3.1	159
7	Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications. Construction and Building Materials, 2014, 69, 159-166.	7.2	145
8	Effect of ageing on the mechanical and chemical properties of binder from RAP treated with bio-based rejuvenators. Composites Part B: Engineering, 2018, 141, 174-181.	12.0	139
9	100% Hot Mix Asphalt Recycling: Challenges and Benefits. Transportation Research Procedia, 2016, 14, 3493-3502.	1.5	89
10	Aging effect on rheology and cracking behaviour of reclaimed binder with bio-based rejuvenators. Journal of Cleaner Production, 2018, 189, 88-97.	9.3	81
11	Hot Mix Asphalt with High RAP Content. Procedia Engineering, 2015, 114, 676-684.	1.2	80
12	Performance-based design of asphalt mixtures and review of key parameters. Materials and Design, 2018, 141, 185-201.	7.0	73
13	Determining optimum rejuvenator addition location in asphalt production plant. Construction and Building Materials, 2019, 198, 368-378.	7.2	43
14	Use of system dynamics for proper conservation and recycling of aggregates for sustainable road construction. Resources, Conservation and Recycling, 2014, 86, 61-73.	10.8	39
15	How to reduce reclaimed asphalt variability: A full-scale study. Construction and Building Materials, 2018, 188, 546-554.	7.2	38
16	Performance-based design of 100% recycled hot-mix asphalt and validation using traffic load simulator. Journal of Cleaner Production, 2019, 237, 117679.	9.3	37
17	Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder. International Journal of Pavement Engineering, 2020, 21, 507-515.	4.4	37
18	Relationship between colloidal index and chemo-rheological properties of asphalt binders modified by various recycling agents. Construction and Building Materials, 2022, 318, 126161.	7.2	27

MARTINS ZAUMANIS

#	Article	IF	CITATIONS
19	Rheological and chemical evaluation of aging in 100% reclaimed asphalt mixtures containing rejuvenators. Construction and Building Materials, 2022, 318, 126026.	7.2	24
20	Warm Mix Asphalt. Green Energy and Technology, 2014, , 309-334.	0.6	23
21	Performance properties of high modulus asphalt concrete containing high reclaimed asphalt content and polymer modified binder. International Journal of Pavement Engineering, 2022, 23, 2255-2264.	4.4	23
22	Laboratory Comparison of Rejuvenated 50% Reclaimed Asphalt Pavement Hot-Mix Asphalt with Conventional 20% RAP Mix. Transportation Research Record, 2017, 2633, 69-79.	1.9	20
23	Impact of laboratory mixing procedure on the properties of reclaimed asphalt pavement mixtures. Construction and Building Materials, 2020, 264, 120709.	7.2	19
24	Comparison of two low-temperature cracking tests for use in performance-based asphalt mixture design. International Journal of Pavement Engineering, 2020, 21, 1461-1469.	4.4	18
25	100% recycled high-modulus asphalt concrete mixture design and validation using vehicle simulator. Construction and Building Materials, 2020, 260, 119891.	7.2	18
26	Laboratory evaluation of organic and chemical warm mix asphalt technologies for SMA asphalt. Baltic Journal of Road and Bridge Engineering, 2012, 7, 191-197.	0.8	18
27	Development of Calculation Tool for Assessing the Energy Demand of Warm Mix Asphalt. Procedia, Social and Behavioral Sciences, 2012, 48, 163-172.	0.5	17
28	Performance Evaluation of Warm Asphalt Mixtures Containing Chemical Additive and Effect of Incorporating High Reclaimed Asphalt Content. Materials, 2021, 14, 3793.	2.9	17
29	Impact of milling machine parameters on the properties of reclaimed asphalt pavement. Construction and Building Materials, 2021, 307, 125114.	7.2	16
30	Surface nanomechanical properties of bio-modified reclaimed asphalt binder. Road Materials and Pavement Design, 2021, 22, 1407-1423.	4.0	15
31	How not to design 100% recycled asphalt mixture using performance-based tests. Road Materials and Pavement Design, 2020, 21, 1634-1646.	4.0	14
32	Assessing the Potential and Possibilities for the Use of Warm Mix Asphalt in Latvia. Construction Science, 2012, 13, .	0.1	13
33	Asphalt Binder Laboratory Short-Term Aging: Effective Parameters and New Protocol for Testing. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	12
34	Finite Element Modeling of Rejuvenator Diffusion in RAP Binder Film – Simulation of Plant Mixing Process. , 2013, , 407-419.		12
35	Environmental impact of rejuvenators in asphalt mixtures containing high reclaimed asphalt content. Road Materials and Pavement Design, 2022, 23, 1400-1414.	4.0	11
36	Performance of asphalt concrete with dolomite sand waste and bof steel slag aggregate. Baltic Journal of Road and Bridge Engineering, 2013, 8, 91-97.	0.8	10

MARTINS ZAUMANIS

#	Article	IF	CITATIONS
37	Asphalt Recycling Technologies: A Review on Limitations and Benefits. IOP Conference Series: Materials Science and Engineering, 2019, 660, 012046.	0.6	8
38	Three indexes to characterise crushing and screening of reclaimed asphalt pavement. International Journal of Pavement Engineering, 2022, 23, 4977-4990.	4.4	6
39	Long term monitoring of full scale pavement test section with eight different asphalt wearing courses. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1817-1828.	3.1	5
40	Performance Based Evaluation on the Use of Different Waste Materials in Asphalt. Procedia, Social and Behavioral Sciences, 2012, 48, 154-162.	0.5	4
41	Performance evaluation of high modulus asphalt concrete mixes. IOP Conference Series: Materials Science and Engineering, 2016, 123, 012055.	0.6	3
42	Performance Characterization of Bituminous Mixtures With Dolomite Sand Waste and BOF Steel Slag. Journal of Testing and Evaluation, 2012, 40, 20120187.	0.7	3
43	Towards production of 100% recycled asphalt. , 0, , .		2
44	Adaptation to flooding and mitigating impacts of road construction â^' a framework to identify practical steps to counter climate change. Baltic Journal of Road and Bridge Engineering, 2015, 10, 346-354.	0.8	2
45	Performance Characterization of Bituminous Mixtures with Dolomite Sand Waste and BOF Steel Slag Aggregates. Construction Science, 2012, 13, .	0.1	1
46	Use of Unconventional Aggregates in Hot Mix Asphalt Concrete. Construction Science, 2013, 14, .	0.1	1
47	Microstructural Investigation of Reclaimed Asphalt Binder with Bio-Based Rejuvenators. RILEM Bookseries, 2019, , 39-43.	0.4	1

48 Performance evaluation of HMAC asphalt concrete mixes. , 2015, , 327-332.

0