Koen Binnemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9464155/publications.pdf

Version: 2024-02-01

567 37,979 92 169
papers citations h-index g-index

589 589 589 589 26124

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Hydrolysis of Uranylâ€, Ndâ€, Ceâ€lons and their Mixtures by Thermal Decomposition of Urea. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	4
2	Liquid-liquid mass transfer in microfluidic reactors: Assumptions and realities of non-ideal systems. Chemical Engineering Science, 2022, 248, 117232.	1.9	5
3	Electrochemical oxidation of terbium(III) in aqueous media: influence of supporting electrolyte on oxidation potential and stability. Journal of Applied Electrochemistry, 2022, 52, 583-593.	1.5	4
4	Recovery of copper, zinc and lead from photovoltaic panel residue. RSC Advances, 2022, 12, 2351-2360.	1.7	9
5	Continuous Counter-Current Ionic Liquid Metathesis in Mixer-Settlers: Efficiency Analysis and Comparison with Batch Operation. ACS Sustainable Chemistry and Engineering, 2022, 10, 946-955.	3.2	4
6	Recovery of cobalt from lithium-ion battery cathode material by combining solvoleaching and solvent extraction. Green Chemistry, 2022, 24, 2839-2852.	4.6	24
7	Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests. Separation and Purification Technology, 2022, 290, 120882.	3.9	20
8	Combined Hydro–Solvo–Bioleaching Approach toward the Valorization of a Sulfidic Copper Mine Tailing. Industrial & Engineering Chemistry Research, 2022, 61, 684-693.	1.8	1
9	Solvometallurgical Process for the Recovery of Tungsten from Scheelite. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 754-764.	1.8	8
10	Separation of Rare Earths and Transition Metals Using Ionic-Liquid-Based Aqueous Biphasic Systems. Industrial & Chemistry Research, 2022, 61, 5927-5935.	1.8	5
11	Gamma radiolytic stability of the novel modified diglycolamide 2,2′-oxybis(<i>N</i> , <i>N</i> ,didecylpropanamide) (mTDDGA) for grouped actinide extraction. RSC Advances, 2022, 12, 12416-12426.	1.7	9
12	Effect of polar molecular organic solvents on non-aqueous solvent extraction of rare-earth elements. Separation and Purification Technology, 2022, 294, 121197.	3.9	9
13	Conventional versus microwave-assisted roasting of sulfidic tailings: Mineralogical transformation and metal leaching behavior. Minerals Engineering, 2022, 183, 107587.	1.8	14
14	One-Step Solvometallurgical Process for Purification of Lithium Chloride to Battery Grade. Journal of Sustainable Metallurgy, 2022, 8, 893-899.	1.1	7
15	Separation of cobalt and nickel via solvent extraction with Cyanex-272: Batch experiments and comparison of mixer-settlers and an agitated column as contactors for continuous counter-current extraction. Separation and Purification Technology, 2022, 296, 121326.	3.9	21
16	Effect of dilution on the performance of ionic liquids in milliflow solvent extraction applications: Towards integration of extraction, scrubbing and stripping operations with in-line membrane-based phase separation. Separation and Purification Technology, 2022, 297, 121519.	3.9	3
17	Solvometallurgical process for the recovery of rare-earth elements from Nd–Fe–B magnets. Separation and Purification Technology, 2021, 258, 117800.	3.9	23
18	Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmCo magnets by a supported ionic liquid phase. RSC Advances, 2021, 11, 8207-8217.	1.7	8

#	Article	IF	Citations
19	Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation. Journal of Sustainable Metallurgy, 2021, 7, 78-86.	1.1	6
20	Electrodeposition of neodymium and dysprosium from organic electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 9070-9079.	1.3	17
21	Synthesis of polyaramids in \hat{l}^3 -valerolactone-based organic electrolyte solutions. Green Chemistry, 2021, 23, 1228-1239.	4.6	6
22	Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Separation and Purification Technology, 2021, 255, 117711.	3.9	36
23	Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 15492-15502.	1.3	6
24	Ethylammonium nitrate enhances the extraction of transition metal nitrates by triâ€∢i>na€butyl phosphate (<scp>TBP</scp>). AICHE Journal, 2021, 67, e17213.	1.8	6
25	Opposite selectivities of triâ€∢i>nàêbutyl phosphate and Cyanex 923 in solvent extraction of lithium and magnesium. AICHE Journal, 2021, 67, e17219.	1.8	17
26	Oxidative Dissolution of Metals in Organic Solvents. Chemical Reviews, 2021, 121, 4506-4530.	23.0	52
27	Antimony Recovery from Lead-Rich Dross of Lead Smelter and Conversion into Antimony Oxide Chloride (Sb ₄ O ₅ Cl ₂). ACS Sustainable Chemistry and Engineering, 2021, 9, 5074-5084.	3.2	6
28	Rare-earth recycling needs market intervention. Nature Reviews Materials, 2021, 6, 459-461.	23.3	36
29	Recovery of Copper from Ammoniacal Leachates by Ion Flotation. Journal of Sustainable Metallurgy, 2021, 7, 1552-1564.	1.1	10
30	Thermodynamic Modeling of Salting Effects in Solvent Extraction of Cobalt(II) from Chloride Media by the Basic Extractant Methyltrioctylammonium Chloride. ACS Omega, 2021, 6, 11355-11366.	1.6	6
31	Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry. ACS Omega, 2021, 6, 13620-13625.	1.6	5
32	Non-equilibrium solvent extraction in milliflow reactors: Precious and base metal separations with undiluted ionic liquids. Separation and Purification Technology, 2021, 265, 118490.	3.9	10
33	Mechanism of Ferric Chloride Facilitating Efficient Lithium Extraction from Magnesium-Rich Brine with Tri- <i>n</i> -butyl Phosphate. Industrial & Engineering Chemistry Research, 2021, 60, 8538-8547.	1.8	15
34	Integrated Process for Recovery of Rare-Earth Elements from Lamp Phosphor Waste Using Methanesulfonic Acid. Industrial & Engineering Chemistry Research, 2021, 60, 10319-10326.	1.8	13
35	N-butyl pyrrolidone/ionic liquid mixtures as benign alternative solvents to N-methyl pyrrolidone for the synthesis of polyaramids. Materials Today Communications, 2021, 29, 102843.	0.9	2
36	Closed-loop process for recovery of metals from NdFeB magnets using a trichloride ionic liquid. Separation and Purification Technology, 2021, 275, 119158.	3.9	12

3

#	Article	IF	CITATIONS
37	Selective extraction of trivalent actinides using CyMe ₄ BTPhen in the ionic liquid Aliquat-336 nitrate. RSC Advances, 2021, 11, 6014-6021.	1.7	9
38	Dissolution behavior of precious metals and selective palladium leaching from spent automotive catalysts by trihalide ionic liquids. RSC Advances, 2021, 11, 10110-10120.	1.7	18
39	Solvometallurgical Recovery of Platinum Group Metals from Spent Automotive Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 337-350.	3.2	44
40	Hard–Soft Interactions in Solvent Extraction with Basic Extractants: Comparing Zinc and Cadmium Halides. ACS Omega, 2021, 6, 27924-27935.	1.6	6
41	Dosimetry and methodology of gamma irradiation for degradation studies on solvent extraction systems. Radiochimica Acta, 2021, 109, 61-72.	0.5	7
42	Nonaqueous Solvent Extraction for Enhanced Metal Separations: Concept, Systems, and Mechanisms. Industrial & Engineering Chemistry Research, 2021, 60, 17285-17302.	1.8	24
43	Development of a solvometallurgical process for the separation of yttrium and europium by Cyanex 923 from ethylene glycol solutions. Separation and Purification Technology, 2020, 235, 116193.	3.9	26
44	Supported ionic liquid phases for the separation of samarium and europium in nitrate media: Towards purification of medical samarium-153. Separation and Purification Technology, 2020, 232, 115939.	3.9	13
45	Recovery of valuable metals from NdFeB magnets by mechanochemically assisted ferric sulfate leaching. Hydrometallurgy, 2020, 191, 105154.	1.8	21
46	The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides. Nuclear Engineering and Technology, 2020, 52, 1013-1021.	1.1	13
47	Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments. RSC Advances, 2020, 10, 307-316.	1.7	43
48	Selective Roasting of Nd–Fe‒B Permanent Magnets as a Pretreatment Step for Intensified Leaching with an Ionic Liquid. Journal of Sustainable Metallurgy, 2020, 6, 91-102.	1.1	26
49	Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals. Green Chemistry, 2020, 22, 417-426.	4.6	42
50	Alkali baking and solvometallurgical leaching of NdFeB magnets. Hydrometallurgy, 2020, 191, 105213.	1.8	26
51	Solvent Extraction Studies for the Separation of Trivalent Actinides from Lanthanides with a Triazole-functionalized 1,10-phenanthroline Extractant. Solvent Extraction and Ion Exchange, 2020, 38, 719-734.	0.8	12
52	Selective Removal of Zinc from BOF Sludge by Leaching with Mixtures of Ammonia and Ammonium Carbonate. Journal of Sustainable Metallurgy, 2020, 6, 680-690.	1.1	21
53	Structural changes of Nd- and Ce-doped ammonium diuranate microspheres during the conversion to U1â^'LnO2±. Journal of Nuclear Materials, 2020, 542, 152454.	1.3	2
54	Separation of precious metals by split-anion extraction using water-saturated ionic liquids. Green Chemistry, 2020, 22, 8375-8388.	4.6	41

#	Article	IF	Citations
55	Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review. Journal of Sustainable Metallurgy, 2020, 6, 505-540.	1.1	53
56	Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification. RSC Advances, 2020, 10, 39601-39610.	1.7	9
57	Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid–choline chloride. RSC Advances, 2020, 10, 28879-28890.	1.7	33
58	Stability of ionic liquids in Brønsted-basic media. Green Chemistry, 2020, 22, 5225-5252.	4.6	38
59	Separation of Scandium from Hydrochloric Acid–Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase. Industrial & Engineering Chemistry Research, 2020, 59, 15332-15342.	1.8	6
60	Selection criteria of diluents of tri-n-butyl phosphate for recovering neodymium(III) from nitrate solutions. Chemical Engineering Research and Design, 2020, 161, 304-311.	2.7	7
61	Non-aqueous solvent extraction of indium from an ethylene glycol feed solution by the ionic liquid Cyphos IL 101: speciation study and continuous counter-current process in mixer–settlers. RSC Advances, 2020, 10, 24595-24612.	1.7	19
62	Solvent Extraction of Gold(III) with Diethyl Carbonate. ACS Sustainable Chemistry and Engineering, 2020, 8, 13713-13723.	3.2	34
63	Ammoniacal Solvoleaching of Copper from High-Grade Chrysocolla. Journal of Sustainable Metallurgy, 2020, 6, 589-598.	1.1	6
64	Indium electrodeposition from indium(<scp>iii</scp>) methanesulfonate in DMSO. Physical Chemistry Chemical Physics, 2020, 22, 24526-24534.	1.3	8
65	Cation Effect of Chloride Salting Agents on Transition Metal Ion Hydration and Solvent Extraction by the Basic Extractant Methyltrioctylammonium Chloride. Inorganic Chemistry, 2020, 59, 13442-13452.	1.9	12
66	Separation of iron(<scp>iii</scp>), zinc(<scp>ii</scp>) and lead(<scp>ii</scp>) from a choline chloride–ethylene glycol deep eutectic solvent by solvent extraction. RSC Advances, 2020, 10, 33161-33170.	1.7	18
67	\hat{I}^3 -Valerolactone-based organic electrolyte solutions: a benign approach to polyaramid dissolution and processing. Green Chemistry, 2020, 22, 6127-6136.	4.6	8
68	Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923. ACS Sustainable Chemistry and Engineering, 2020, 8, 19032-19039.	3.2	21
69	Image analysis data for the study of the reactivity of the phases in Nd-Fe-B magnets etched with HCl-saturated Cyphos IL 101. Data in Brief, 2020, 32, 106203.	0.5	1
70	Reversible electrodeposition and stripping of magnesium from solvate ionic liquid–tetrabutylammonium chloride mixtures. RSC Advances, 2020, 10, 42021-42029.	1.7	5
71	Extraction Behavior and Separation of Precious and Base Metals from Chloride, Bromide, and Iodide Media Using Undiluted Halide Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2020, 8, 8223-8234.	3.2	23
72	Fabrication of Nd- and Ce-doped uranium dioxide microspheres via internal gelation. Journal of Nuclear Materials, 2020, 535, 152128.	1.3	8

#	Article	IF	CITATIONS
73	Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resources, Conservation and Recycling, 2020, 160, 104919.	5.3	114
74	Effects of thiol substitution in deep-eutectic solvents (DESs) as solvents for metal oxides. RSC Advances, 2020, 10, 23484-23490.	1.7	15
75	Dissolution of noble metals in highly concentrated acidic salt solutions. Chemical Communications, 2020, 56, 8230-8232.	2.2	28
76	One-pot synthesis of symmetric imidazolium ionic liquids <i>N</i> , <i>N</i> -disubstituted with long alkyl chains. RSC Advances, 2020, 10, 21071-21081.	1.7	7
77	Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. Green Chemistry, 2020, 22, 4210-4221.	4.6	149
78	Hydration counteracts the separation of lanthanides by solvent extraction. AICHE Journal, 2020, 66, e16545.	1.8	16
79	Physicochemical study of diethylmethylammonium methanesulfonate under anhydrous conditions. Journal of Chemical Physics, 2020, 152, 234504.	1.2	8
80	Highly Soluble 1,4-Diaminoanthraquinone Derivative for Nonaqueous Symmetric Redox Flow Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 3832-3843.	3.2	44
81	Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents. RSC Advances, 2020, 10, 7328-7335.	1.7	34
82	Extraction of gallium from simulated Bayer process liquor by Kelex 100 dissolved in ionic liquids. Dalton Transactions, 2020, 49, 3532-3544.	1.6	17
83	Selective Extraction of Americium from Curium and the Lanthanides by the Lipophilic Ligand CyMe ₄ BTPhen Dissolved in Aliquat-336 Nitrate Ionic Liquid. Solvent Extraction and Ion Exchange, 2020, 38, 194-211.	0.8	20
84	Cerium-containing complexes for low-cost, non-aqueous redox flow batteries (RFBs). Journal of Power Sources, 2020, 450, 227634.	4.0	20
85	Gamma Radiolysis of TODGA and CyMe ₄ BTPhen in the Ionic Liquid Tri- <i>n</i> -Octylmethylammonium Nitrate. Solvent Extraction and Ion Exchange, 2020, 38, 212-235.	0.8	23
86	Selective removal of magnesium from lithiumâ€rich brine for lithium purification by synergic solvent extraction using βâ€diketones and Cyanex 923. AICHE Journal, 2020, 66, e16246.	1.8	32
87	Recycling of bonded NdFeB permanent magnets using ionic liquids. Green Chemistry, 2020, 22, 2821-2830.	4.6	28
88	Selective leaching of lead from lead smelter residues using EDTA. RSC Advances, 2020, 10, 42147-42156.	1.7	8
89	Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Separation and Purification Technology, 2019, 210, 209-218.	3.9	72
90	Enhancing Metal Separations Using Hydrophilic Ionic Liquids and Analogues as Complexing Agents in the More Polar Phase of Liquid–Liquid Extraction Systems. Industrial & Engineering Chemistry Research, 2019, 58, 15628-15636.	1.8	27

#	Article	IF	Citations
91	Recovery of Gallium, Indium, and Arsenic from Semiconductors Using Tribromide Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 14451-14459.	3.2	42
92	Isolation of molybdenum(<scp>vi</scp>) from simulated leachates of irradiated uranium-aluminum targets using diluted and undiluted sulfate ionic liquids. Green Chemistry, 2019, 21, 3948-3960.	4.6	6
93	Metal Recovery from Spent Samarium–Cobalt Magnets Using a Trichloride Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2019, 7, 2578-2584.	3.2	63
94	Efficient and Sustainable Removal of Magnesium from Brines for Lithium/Magnesium Separation Using Binary Extractants. ACS Sustainable Chemistry and Engineering, 2019, 7, 19225-19234.	3.2	51
95	Recovery of Lead and Silver from Zinc Leaching Residue Using Methanesulfonic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 19807-19815.	3.2	32
96	Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coordination Chemistry Reviews, 2019, 382, 103-125.	9.5	23
97	Methanesulfonic acid: a sustainable acidic solvent for recovering metals from the jarosite residue of the zinc industry. Green Chemistry, 2019, 21, 5394-5404.	4.6	46
98	Model for Metal Extraction from Chloride Media with Basic Extractants: A Coordination Chemistry Approach. Inorganic Chemistry, 2019, 58, 12289-12301.	1.9	52
99	Effect of Magnetic Susceptibility Gradient on the Magnetomigration of Rare-Earth Ions. Journal of Physical Chemistry C, 2019, 123, 23131-23139.	1.5	8
100	Stability of europium(<scp>ii</scp>) in aqueous nitrate solutions. Dalton Transactions, 2019, 48, 14758-14768.	1.6	15
101	Integrated process for the recovery of yttrium and europium from CRT phosphor waste. RSC Advances, 2019, 9, 1378-1386.	1.7	14
102	Selective rare earth element extraction using high-pressure acid leaching of slags arising from the smelting of bauxite residue. Hydrometallurgy, 2019, 184, 162-174.	1.8	42
103	A Study of the Occurrence of Selected Rare-Earth Elements in Neutralized–Leached Bauxite Residue and Comparison with Untreated Bauxite Residue. Journal of Sustainable Metallurgy, 2019, 5, 57-68.	1.1	14
104	<i>p</i> -Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Solubilizing Metal Oxides. ACS Sustainable Chemistry and Engineering, 2019, 7, 3940-3948.	3.2	100
105	Solvation structure of poly- <i>m</i> -phenyleneisophthalamide (PMIA) in ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 4053-4062.	1.3	17
106	Selective Metal Recovery from Jarosite Residue by Leaching with Acid-Equilibrated Ionic Liquids and Precipitation-Stripping. ACS Sustainable Chemistry and Engineering, 2019, 7, 4239-4246.	3.2	40
107	Recovery of cobalt from dilute aqueous solutions using activated carbon–alginate composite spheres impregnated with Cyanex 272. RSC Advances, 2019, 9, 18734-18746.	1.7	10
108	Separation of GaCl ₃ from AlCl ₃ by Solid–Liquid Extraction and Stripping Using Anhydrous <i>n</i> -Dodecane and NaCl. Industrial & Engineering Chemistry Research, 2019, 58, 12459-12464.	1.8	3

7

#	Article	IF	Citations
109	Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 11521-11528.	3.2	179
110	Enhancing Metal Separations by Liquid–Liquid Extraction Using Polar Solvents. Chemistry - A European Journal, 2019, 25, 9197-9201.	1.7	33
111	Removal of metallic coatings from rare-earth permanent magnets by solutions of bromine in organic solvents. RSC Advances, 2019, 9, 14910-14915.	1.7	8
112	Enhancing rare-earth recovery from lamp phosphor waste. Hydrometallurgy, 2019, 187, 38-44.	1.8	56
113	Tuning Solvent Miscibility: A Fundamental Assessment on the Example of Induced Methanol/ <i>n</i> i>n-Dodecane Phase Separation. Journal of Physical Chemistry B, 2019, 123, 4400-4407.	1.2	8
114	Selective recovery of germanium from iron-rich solutions using a supported ionic liquid phase (SILP). Separation and Purification Technology, 2019, 221, 83-92.	3.9	16
115	Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Separation and Purification Technology, 2019, 219, 281-289.	3.9	40
116	Electrodeposition of indium from non-aqueous electrolytes. Chemical Communications, 2019, 55, 4789-4792.	2.2	11
117	Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids. RSC Advances, 2019, 9, 4876-4883.	1.7	28
118	Electrodeposition of indium from the ionic liquid trihexyl(tetradecyl)phosphonium chloride. Green Chemistry, 2019, 21, 1517-1530.	4.6	26
119	Recovery of Rare Earths from Bauxite Residue (Red Mud). World Scientific Series in Current Energy Issues, 2019, , 343-356.	0.1	3
120	Synthesis of Guerbet ionic liquids and extractants as \hat{l}^2 -branched biosourceable hydrophobes. Organic and Biomolecular Chemistry, 2019, 17, 9778-9791.	1.5	6
121	Selective ion-exchange separation of scandium(III) over iron(III) by crystalline α-zirconium phosphate platelets under acidic conditions. Separation and Purification Technology, 2019, 215, 81-90.	3.9	30
122	Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder by selective sulfation roasting and water leaching. Hydrometallurgy, 2019, 183, 60-70.	1.8	26
123	Studies on the Thoria Fuel Recycling Loop Using Triflic Acid: Effects of Powder Characteristics, Solution Acidity, and Radium Behavior. Journal of Sustainable Metallurgy, 2019, 5, 118-126.	1.1	3
124	Selective recovery of indium from iron-rich solutions using an Aliquat 336 iodide supported ionic liquid phase (SILP). Separation and Purification Technology, 2019, 212, 843-853.	3.9	35
125	Metal coordination in the high-temperature leaching of roasted NdFeB magnets with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. RSC Advances, 2018, 8, 9299-9310.	1.7	30
126	Rare Earths and the Balance Problem: How to Deal with Changing Markets?. Journal of Sustainable Metallurgy, 2018, 4, 126-146.	1.1	194

#	Article	IF	Citations
127	Selective Substitution of POCl3 with Organometallic Reagents: Synthesis of Phosphinates and Phosphonates. Synthesis, 2018, 50, 2019-2026.	1.2	6
128	Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Minerals Engineering, 2018, 119, 82-92.	1.8	117
129	Fluorine-functionalized ionic liquids with high oxygen solubility. RSC Advances, 2018, 8, 4525-4530.	1.7	26
130	Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature. Green Chemistry, 2018, 20, 1065-1073.	4.6	50
131	Solvation Structure of Sodium Bis(fluorosulfonyl)imide-Glyme Solvate Ionic Liquids and Its Influence on Cycling of Na-MNC Cathodes. Journal of Physical Chemistry B, 2018, 122, 275-289.	1.2	42
132	lonic liquids with trichloride anions for oxidative dissolution of metals and alloys. Chemical Communications, 2018, 54, 475-478.	2.2	61
133	Ethylenediaminetriacetic Acid-Functionalized Activated Carbon for the Adsorption of Rare Earths from Aqueous Solutions. Industrial & Engineering Chemistry Research, 2018, 57, 1487-1497.	1.8	55
134	Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries. Journal of Power Sources, 2018, 378, 338-344.	4.0	40
135	Thermal stability of trihexyl(tetradecyl)phosphonium chloride. Physical Chemistry Chemical Physics, 2018, 20, 2444-2456.	1.3	46
136	Efficient separation of rare earths recovered by a supported ionic liquid from bauxite residue leachate. RSC Advances, 2018, 8, 11886-11893.	1.7	27
137	Cobalt(<scp>ii</scp>) liquid metal salts for high current density electrodeposition of cobalt. Dalton Transactions, 2018, 47, 4975-4986.	1.6	9
138	Low-Temperature Oxidation of Fine UO2 Powders: Thermochemistry and Kinetics. Inorganic Chemistry, 2018, 57, 4196-4204.	1.9	8
139	Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336. Separation and Purification Technology, 2018, 201, 318-326.	3.9	57
140	Effect of the diluent on the solvent extraction of neodymium(III) by bis(2-ethylhexyl)phosphoric acid (D2EHPA). Hydrometallurgy, 2018, 177, 146-151.	1.8	36
141	Purification of crude In(OH)3 using the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Green Chemistry, 2018, 20, 412-424.	4.6	21
142	Synthesis of Poly-p-phenylene Terephthalamide (PPTA) in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 1362-1369.	3.2	28
143	Solvent Extraction of Am(III), Cm(III), and Ln(III) lons from Simulated Highly Active Raffinate Solutions by TODGA Diluted in Aliquat-336 Nitrate Ionic Liquid. Solvent Extraction and Ion Exchange, 2018, 36, 519-541.	0.8	26
144	Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids. RSC Advances, 2018, 8, 34754-34763.	1.7	19

#	Article	IF	Citations
145	Magnetophoretic Sprinting: A Study on the Magnetic Properties of Aqueous Lanthanide Solutions. Journal of Physical Chemistry C, 2018, 122, 23675-23682.	1.5	13
146	Speciation of lanthanide ions in the organic phase after extraction from nitrate media by basic extractants. RSC Advances, 2018, 8, 32044-32054.	1.7	33
147	Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery. Engineering, 2018, 4, 398-405.	3.2	28
148	Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Room-Temperature Electrolysis Pretreatment Step. ACS Sustainable Chemistry and Engineering, 2018, 6, 9375-9382.	3.2	47
149	Multiâ€Gram Scale Synthesis of 1,2,3â€Triazolium Ionic Liquids and Assay of Their Resistance towards Bases. European Journal of Organic Chemistry, 2018, 2018, 4850-4856.	1.2	14
150	Trihalide ionic liquids as non-volatile oxidizing solvents for metals. Green Chemistry, 2018, 20, 3327-3338.	4.6	56
151	Combined multi-step precipitation and supported ionic liquid phase chromatography for the recovery of rare earths from leach solutions of bauxite residues. Hydrometallurgy, 2018, 180, 229-235.	1.8	26
152	Recovery of rare earths from the green lamp phosphor LaPO ₄ :Ce ³⁺ ,Tb ³⁺ (LAP) by dissolution in concentrated methanesulphonic acid. RSC Advances, 2018, 8, 26349-26355.	1.7	38
153	Mechanism for Solvent Extraction of Lanthanides from Chloride Media by Basic Extractants. Journal of Solution Chemistry, 2018, 47, 1351-1372.	0.6	16
154	Separation of samarium and europium by solvent extraction with an undiluted quaternary ammonium ionic liquid: towards high-purity medical samarium-153. RSC Advances, 2018, 8, 20077-20086.	1.7	27
155	Docusate Ionic Liquids: Effect of Cation on Water Solubility and Solvent Extraction Behavior. ChemPlusChem, 2017, 82, 458-466.	1.3	18
156	Manganese-containing ionic liquids: synthesis, crystal structures and electrodeposition of manganese films and nanoparticles. Dalton Transactions, 2017, 46, 2497-2509.	1.6	11
157	Synthesis of gadolinium-doped thorium dioxide via a wet chemical route: Limitations of the co-precipitation method. Journal of Nuclear Materials, 2017, 489, 211-221.	1.3	10
158	Solvometallurgy: An Emerging Branch of Extractive Metallurgy. Journal of Sustainable Metallurgy, 2017, 3, 570-600.	1.1	178
159	Recovery of Rare Earths and Major Metals from Bauxite Residue (Red Mud) by Alkali Roasting, Smelting, and Leaching. Journal of Sustainable Metallurgy, 2017, 3, 393-404.	1.1	65
160	Process development for hydrometallurgical recovery of valuable metals from sulfide-rich residue generated in a secondary lead smelter. Hydrometallurgy, 2017, 169, 589-598.	1.8	10
161	A non-aqueous all-copper redox flow battery with highly soluble active species. Electrochimica Acta, 2017, 236, 116-121.	2.6	35
162	Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids. Dalton Transactions, 2017, 46, 5269-5278.	1.6	20

#	Article	IF	Citations
163	Direct Analysis of Metal Ions in Solutions with High Salt Concentrations by Total Reflection X-ray Fluorescence. Analytical Chemistry, 2017, 89, 4595-4603.	3.2	32
164	Polymerization of PPTA in Ionic Liquid/Cosolvent Mixtures. Macromolecules, 2017, 50, 3089-3100.	2.2	15
165	Recycling of rare earths from lamp phosphor waste: Enhanced dissolution of LaPO 4 :Ce 3+ ,Tb 3+ by mechanical activation. Journal of Cleaner Production, 2017, 156, 226-234.	4.6	49
166	Metal extraction with a short-chain imidazolium nitrate ionic liquid. Chemical Communications, 2017, 53, 5271-5274.	2.2	35
167	Speciation of indium(<scp>iii</scp>) chloro complexes in the solvent extraction process from chloride aqueous solutions to ionic liquids. Dalton Transactions, 2017, 46, 4412-4421.	1.6	38
168	Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Separation and Purification Technology, 2017, 176, 208-219.	3.9	85
169	High-speed electrodeposition of copper–tin–zinc stacks from liquid metal salts for Cu ₂ ZnSnSe ₄ solar cells. Chemical Communications, 2017, 53, 913-916.	2.2	10
170	Recovery of scandium(<scp>iii</scp>) from diluted aqueous solutions by a supported ionic liquid phase (SILP). RSC Advances, 2017, 7, 49664-49674.	1.7	34
171	Titanium alkylphosphate functionalised mesoporous silica for enhanced uptake of rare-earth ions. Journal of Materials Chemistry A, 2017, 5, 23805-23814.	5.2	17
172	Magnetomigration of Rare-Earth lons Triggered by Concentration Gradients. Journal of Physical Chemistry Letters, 2017, 8, 5301-5305.	2.1	21
173	Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. RSC Advances, 2017, 7, 45351-45362.	1.7	31
174	Cobalt(ii)/nickel(ii) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid. RSC Advances, 2017, 7, 35992-35999.	1.7	46
175	Electrodeposition of germanium-containing precursors for Cu2(Sn,Ge)S3 thin film solar cells. Electrochimica Acta, 2017, 251, 651-659.	2.6	4
176	Cobalt(<scp>ii</scp>) containing liquid metal salts for electrodeposition of cobalt and electrochemical nanoparticle formation. Dalton Transactions, 2017, 46, 12845-12855.	1.6	8
177	Electrodeposition of bismuth telluride thin films containing silica nanoparticles for thermoelectric applications. Electrochimica Acta, 2017, 253, 554-562.	2.6	5
178	Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. Minerals Engineering, 2017, 112, 92-102.	1.8	37
179	Closed-loop solvometallurgical process for recovery of lead from iron-rich secondary lead smelter residues. RSC Advances, 2017, 7, 49999-50005.	1.7	16
180	Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets. RSC Advances, 2017, 7, 32100-32113.	1.7	107

#	Article	IF	Citations
181	Multifunctional Alginate–Sulfonate–Silica Sphere-Shaped Adsorbent Particles for the Recovery of Indium(III) from Secondary Resources. Industrial & Engineering Chemistry Research, 2017, 56, 8677-8688.	1.8	14
182	Use of Triflic Acid in the Recycling of Thoria from Nuclear Fuel Production Scrap. Journal of Sustainable Metallurgy, 2017, 3, 659-667.	1.1	7
183	Non-aqueous solvent extraction of rare-earth nitrates from ethylene glycol to n-dodecane by Cyanex 923. Separation and Purification Technology, 2017, 174, 544-553.	3.9	40
184	Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 697, 132-137.	2.8	54
185	Separation of Rare Earths by Solvent Extraction with an Undiluted Nitrate Ionic Liquid. Journal of Sustainable Metallurgy, 2017, 3, 73-78.	1.1	34
186	REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. Journal of Sustainable Metallurgy, 2017, 3, 122-149.	1.1	365
187	Chemical immobilization of 8-hydroxyquinoline and 8-hydroxyquinaldine on chitosan-silica adsorbent materials for the selective recovery of gallium from Bayer liquor. Hydrometallurgy, 2017, 171, 275-284.	1.8	34
188	The EURARE Project: Development of a Sustainable Exploitation Scheme for Europe's Rare Earth Ore Deposits. Johnson Matthey Technology Review, 2017, 61, 142-153.	0.5	27
189	Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Minerals Engineering, 2016, 92, 151-159.	1.8	140
190	Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid. Physical Chemistry Chemical Physics, 2016, 18, 16039-16045.	1.3	49
191	New metal extractants and super-acidic ionic liquids derived from sulfamic acid. Chemical Communications, 2016, 52, 7032-7035.	2.2	22
192	Purification of indium by solvent extraction with undiluted ionic liquids. Green Chemistry, 2016, 18, 4116-4127.	4.6	69
193	Effect of sintering atmosphere on the hardness of ThO2. Journal of Nuclear Materials, 2016, 477, 222-227.	1.3	7
194	Dual-doped mesoporous carbon synthesized by a novel nanocasting method with superior catalytic activity for oxygen reduction. Nano Energy, 2016, 26, 131-138.	8.2	68
195	Influence of irradiance on the photochemical reduction of europium(<scp>iii</scp>). Green Chemistry, 2016, 18, 4198-4204.	4.6	8
196	Alkylsulfuric acid ionic liquids: a promising class of strongly acidic room-temperature ionic liquids. Chemical Communications, 2016, 52, 4640-4643.	2.2	25
197	Ionic Liquid Crystals: Versatile Materials. Chemical Reviews, 2016, 116, 4643-4807.	23.0	617
198	Biobased Ionic Liquids: Solvents for a Green Processing Industry?. ACS Sustainable Chemistry and Engineering, 2016, 4, 2917-2931.	3.2	195

#	Article	IF	Citations
199	Magnetomigration of rare-earth ions in inhomogeneous magnetic fields. Physical Chemistry Chemical Physics, 2016, 18, 27342-27350.	1.3	26
200	Electro-precipitation via oxygen reduction: a new technique for thin film manganese oxide deposition. Journal of Materials Chemistry A, 2016, 4, 13555-13562.	5.2	2
201	Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. Journal of Sustainable Metallurgy, 2016, 2, 365-386.	1.1	231
202	Practical guidelines for best practice on Total Reflection X-ray Fluorescence spectroscopy: Analysis of aqueous solutions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 124, 109-115.	1.5	36
203	Assessment of the U3O7 Crystal Structure by X-ray and Electron Diffraction. Inorganic Chemistry, 2016, 55, 9923-9936.	1.9	24
204	Guanidinium nonaflate as a solid-state proton conductor. Journal of Materials Chemistry A, 2016, 4, 12241-12252.	5.2	43
205	Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue. Jom, 2016, 68, 2958-2962.	0.9	18
206	Photochemical recovery of europium from non-aqueous solutions. Physical Chemistry Chemical Physics, 2016, 18, 29961-29968.	1.3	12
207	Crystal structure of apatite type Ca _{2.49} Nd _{7.51} (SiO ₄) ₆ O _{1.75} . Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 209-211.	0.2	5
208	A mechanism for solvent extraction of first row transition metals from chloride media with the ionic liquid tetraoctylammonium oleate. Dalton Transactions, 2016, 45, 9661-9668.	1.6	27
209	Liquid Nickel Salts: Synthesis, Crystal Structure Determination, and Electrochemical Synthesis of Nickel Nanoparticles. Chemistry - A European Journal, 2016, 22, 1010-1020.	1.7	17
210	Halogen-free synthesis of symmetrical 1,3-dialkylimidazolium ionic liquids using non-enolisable starting materials. RSC Advances, 2016, 6, 8848-8859.	1.7	23
211	Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chemistry, 2016, 18, 2005-2013.	4.6	95
212	Electrochemical studies of the electrodeposition of copper-zinc-tin alloys from pyrophosphate electrolytes followed by selenization for CZTSe photovoltaic cells. Electrochimica Acta, 2016, 188, 344-355.	2.6	22
213	Low-Temperature Oxidation of Fine UO ₂ Powders: A Process of Nanosized Domain Development. Inorganic Chemistry, 2016, 55, 3915-3927.	1.9	26
214	On the electrochemical deposition of metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 3914-3925.	5.2	138
215	Electrodeposition and selenization of brass/tin/germanium multilayers for Cu2Zn(Sn1-xGex)Se4 thin film photovoltaic devices. Electrochimica Acta, 2016, 198, 104-114.	2.6	13
216	Antimony Recovery from End-of-Life Products and Industrial Process Residues: A Critical Review. Journal of Sustainable Metallurgy, 2016, 2, 79-103.	1.1	110

#	Article	IF	Citations
217	Activated sintering of ThO 2 with Al 2 O 3 under reducing and oxidizing conditions. Journal of Nuclear Materials, 2016, 470, 34-43.	1.3	14
218	Towards an all-copper redox flow battery based on a copper-containing ionic liquid. Chemical Communications, 2016, 52, 414-417.	2.2	34
219	Ionic liquids as solvents for PPTA oligomers. Green Chemistry, 2016, 18, 1639-1652.	4.6	54
220	Antimony recovery from the halophosphate fraction in lamp phosphor waste: a zero-waste approach. Green Chemistry, 2016, 18, 176-185.	4.6	17
221	Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. Journal of Sustainable Metallurgy, 2016, 2, 28-37.	1.1	126
222	Shaping of Alginate–Silica Hybrid Materials into Microspheres through Vibrating-Nozzle Technology and Their Use for the Recovery of Neodymium from Aqueous Solutions. Industrial & Engineering Chemistry Research, 2015, 54, 12836-12846.	1.8	43
223	Selective Singleâ€Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionicâ€Liquid–Water–Ionicâ€Liquid Solvent Extraction System. Chemistry - A European Journal, 2015, 21, 11757-11766.	1.7	20
224	Separation of rare earths by split-anion extraction. Hydrometallurgy, 2015, 156, 206-214.	1.8	70
225	Synthesis of UO2 and ThO2 doped with Gd2O3. Journal of Nuclear Materials, 2015, 461, 271-281.	1.3	15
226	Thermochromism and switchable paramagnetism of cobalt(<scp>ii</scp>) in thiocyanate ionic liquids. Dalton Transactions, 2015, 44, 11286-11289.	1.6	63
227	Overview of the Effect of Salts on Biphasic Ionic Liquid/Water Solvent Extraction Systems: Anion Exchange, Mutual Solubility, and Thermomorphic Properties. Journal of Physical Chemistry B, 2015, 119, 6747-6757.	1.2	140
228	Photochemical recycling of europium from Eu/Y mixtures in red lamp phosphor waste streams. Green Chemistry, 2015, 17, 2180-2187.	4.6	40
229	Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 2015, 76, 20-27.	1.8	368
230	Accurate lattice parameter measurements of stoichiometric uranium dioxide. Journal of Nuclear Materials, 2015, 459, 135-142.	1.3	88
231	Photophysical Property of <i>catena</i> -Bis(thiocyanato)aurate(I) Complexes in Ionic Liquids. Crystal Growth and Design, 2015, 15, 1422-1429.	1.4	10
232	Recovery of Scandium(III) from Aqueous Solutions by Solvent Extraction with the Functionalized Ionic Liquid Betainium Bis(trifluoromethylsulfonyl)imide. Industrial & Engineering Chemistry Research, 2015, 54, 1887-1898.	1.8	113
233	1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells. Energy and Environmental Science, 2015, 8, 1276-1291.	15.6	134
234	Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids. Dalton Transactions, 2015, 44, 1379-1387.	1.6	100

#	Article	IF	Citations
235	Rare Earths and the Balance Problem. Journal of Sustainable Metallurgy, 2015, 1, 29-38.	1.1	140
236	Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 2015, 295, 1-45.	9.5	2,104
237	Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf ₂ N]. Green Chemistry, 2015, 17, 2150-2163.	4.6	142
238	Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production, 2015, 99, 17-38.	4.6	463
239	Homogeneous liquid–liquid extraction of metal ions with non-fluorinated bis(2-ethylhexyl)phosphate ionic liquids having a lower critical solution temperature in combination with water. Chemical Communications, 2015, 51, 14183-14186.	2.2	41
240	Selective Extraction of Metals from Chloride Solutions with the Tetraoctylphosphonium Oleate Ionic Liquid. Industrial & Engineering Chemistry Research, 2015, 54, 5149-5158.	1.8	72
241	Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chemistry, 2015, 17, 2931-2942.	4.6	181
242	Sulfonic acid functionalized ionic liquids for dissolution of metal oxides and solvent extraction of metal ions. Chemical Communications, 2015, 51, 9006-9009.	2.2	59
243	Crystal structures of hydrated rare-earth bis(trifluoromethylsulfonyl)imide salts. CrystEngComm, 2015, 17, 7142-7149.	1.3	14
244	Metal Recovery from Nickel Metal Hydride Batteries Using Cyanex 923 in Tricaprylylmethylammonium Nitrate from Chloride Aqueous Media. Journal of Sustainable Metallurgy, 2015, 1, 161-167.	1.1	22
245	Metal–organic framework deposition on dealloyed substrates. Journal of Materials Chemistry A, 2015, 3, 19747-19753.	5.2	13
246	Lattice contraction and lattice deformation of UO 2 and ThO 2 doped with Gd 2 O 3. Journal of Nuclear Materials, 2015, 467, 135-143.	1.3	18
247	Electrodeposition of germanium at elevated temperatures and pressures from ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 12080-12089.	1.3	23
248	Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system. Chemical Communications, 2015, 51, 15932-15935.	2.2	63
249	Solvent Extraction of Scandium(III) by an Aqueous Biphasic System with a Nonfluorinated Functionalized Ionic Liquid. Industrial & Engineering Chemistry Research, 2015, 54, 8988-8996.	1.8	66
250	Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y ₂ O ₃ Eu ³⁺ from lamp phosphor waste. Green Chemistry, 2015, 17, 856-868.	4.6	189
251	Cellulose Amorphization by Swelling in Ionic Liquid/Water Mixtures: A Combined Macroscopic and Secondâ∈Harmonic Microscopy Study. ChemSusChem, 2015, 8, 82-86.	3.6	13
252	Catalytically active gauze-supported skeletal nickel prepared from Ni–Zn alloys electrodeposited from an acetamide–dimethyl sulfone eutectic mixture. Catalysis Today, 2015, 246, 191-197.	2.2	5

#	Article	IF	CITATIONS
253	Paired Electrosynthesis of Diacid and Diol Precursors Using Dienes and CO ₂ as the Carbon Source. ChemElectroChem, 2015, 2, 73-76.	1.7	45
254	Lignin solubility in nonâ€imidazolium ionic liquids. Journal of Chemical Technology and Biotechnology, 2015, 90, 1821-1826.	1.6	62
255	Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein Journal of Organic Chemistry, 2014, 10, 2484-2500.	1.3	150
256	On the Electrochemical Deposition of Metal-Organic Frameworks. ECS Transactions, 2014, 61, 25-40.	0.3	10
257	Decarboxylation of a Wide Range of Amino Acids with Electrogenerated Hypobromite. European Journal of Organic Chemistry, 2014, 2014, 6649-6652.	1.2	26
258	From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. RSC Advances, 2014, 4, 64099-64111.	1.7	149
259	Endâ€ofâ€Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in lonic Liquids. ChemSusChem, 2014, 7, 610-617.	3.6	52
260	Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase. Hydrometallurgy, 2014, 144-145, 27-33.	1.8	86
261	Carbene formation upon reactive dissolution of metal oxides in imidazolium ionic liquids. Dalton Transactions, 2014, 43, 3443-3452.	1.6	30
262	Selective Uptake of Rare Earths from Aqueous Solutions by EDTA-Functionalized Magnetic and Nonmagnetic Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4980-4988.	4.0	148
263	Separation of rare earths from transition metals by liquid–liquid extraction from a molten salt hydrate to an ionic liquid phase. Dalton Transactions, 2014, 43, 3186-3195.	1.6	78
264	Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. Journal of Materials Chemistry A, 2014, 2, 1530-1540.	5.2	166
265	Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chemistry, 2014, 16, 1594-1606.	4.6	188
266	Base stable quaternary ammonium ionic liquids. RSC Advances, 2014, 4, 4472-4477.	1.7	33
267	Electrical conductivity and glass formation in nitrile-functionalized pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids: chain length and odd–even effects of the alkyl spacer between the pyrrolidinium ring and the nitrile group. Physical Chemistry Chemical Physics, 2014. 16. 10548.	1.3	15
268	Homogeneous liquid–liquid extraction of neodymium(<scp>iii</scp>) by choline hexafluoroacetylacetonate in the ionic liquid choline bis(trifluoromethylsulfonyl)imide. Dalton Transactions, 2014, 43, 11566-11578.	1.6	72
269	Liquid–liquid extraction of europium(<scp>iii</scp>) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Dalton Transactions, 2014, 43, 1862-1872.	1.6	115
270	Determination of Halide Impurities in Ionic Liquids by Total Reflection X-ray Fluorescence Spectrometry. Analytical Chemistry, 2014, 86, 3931-3938.	3.2	45

#	Article	IF	Citations
271	Electrodeposition of Lithium from Lithium-Containing Solvate Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 20152-20162.	1.5	29
272	Separation of rare earths and nickel by solvent extraction with two mutually immiscible ionic liquids. RSC Advances, 2014, 4, 5753.	1.7	66
273	Selective extraction of metals using ionic liquids for nickel metal hydride battery recycling. Green Chemistry, 2014, 16, 4595-4603.	4.6	110
274	Electrodeposition of thick palladium coatings from a palladium(<scp>ii</scp>)-containing ionic liquid. Chemical Communications, 2014, 50, 10248-10250.	2.2	24
275	High current density electrodeposition of silver from silver-containing liquid metal salts with pyridine-N-oxide ligands. Dalton Transactions, 2014, 43, 1589-1598.	1.6	28
276	Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chemical Communications, 2014, 50, 12545-12547.	2.2	136
277	Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths. Journal of Materials Chemistry A, 2014, 2, 19415-19426.	5.2	151
278	Tin-free catalysts for the production of aliphatic thermoplastic polyurethanes. Green Chemistry, 2014, 16, 4401-4407.	4.6	23
279	Solvent extraction of europium(<scp>iii</scp>) to a fluorine-free ionic liquid phase with a diglycolamic acid extractant. RSC Advances, 2014, 4, 11899-11906.	1.7	42
280	Homoleptic and heteroleptic N-alkylimidazole zinc(<scp>ii</scp>)-containing ionic liquids for high current density electrodeposition. Dalton Transactions, 2014, 43, 12329-12341.	1.6	27
281	Electrodeposition of antimony from chloride-free ethylene glycol solutions and fabrication of thermoelectric Bi2Te3/(Bi1â^xSbx)2Te3 multilayers using pulsed potential electrodeposition. Electrochimica Acta, 2014, 147, 451-459.	2.6	15
282	Enantioselective Assembly of a Ruthenium(II) Polypyridyl Complex into a Double Helix. Angewandte Chemie - International Edition, 2014, 53, 8959-8962.	7.2	14
283	Acid-Stable Magnetic Core–Shell Nanoparticles for the Separation of Rare Earths. Industrial & Description of Rare Ea	1.8	57
284	Highly Selective Separation of Carbon Dioxide from Nitrogen and Methane by Nitrile/Glycol-Difunctionalized Ionic Liquids in Supported Ionic Liquid Membranes (SILMs). Journal of Physical Chemistry B, 2014, 118, 7440-7449.	1.2	41
285	Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. Journal of Rare Earths, 2014, 32, 195-200.	2.5	147
286	Solvent Extraction of Neodymium(III) by Functionalized Ionic Liquid Trioctylmethylammonium Dioctyl Diglycolamate in Fluorine-free Ionic Liquid Diluent. Industrial & Engineering Chemistry Research, 2014, 53, 6500-6508.	1.8	124
287	A Hybrid Supercapacitor based on Porous Carbon and the Metalâ€Organic Framework MILâ€100(Fe). ChemElectroChem, 2014, 1, 1182-1188.	1.7	141
288	Determination of Halide Ions in Solution by Total Reflection X-ray Fluorescence (TXRF) Spectrometry. Analytical Chemistry, 2014, 86, 1391-1394.	3.2	20

#	Article	IF	Citations
289	Liquid-liquid solvent extraction of rare earths: a crystallographic analysis Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1006-C1006.	0.0	0
290	Liquid–liquid extraction of neodymium(iii) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation. Physical Chemistry Chemical Physics, 2013, 15, 16533.	1.3	98
291	Highly active gauze-supported skeletal nickel catalysts. Chemical Communications, 2013, 49, 8498.	2.2	11
292	Homogeneous Liquid–Liquid Extraction of Metal Ions with a Functionalized Ionic Liquid. Journal of Physical Chemistry Letters, 2013, 4, 1659-1663.	2.1	194
293	How safe are protic ionic liquids? Explosion of pyrrolidinium nitrate. Green Chemistry, 2013, 15, 3484.	4.6	33
294	Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 2013, 108, 788-794.	2.6	48
295	Room-temperature silver-containing liquid metal salts with nitrate anions. Physical Chemistry Chemical Physics, 2013, 15, 18934.	1.3	25
296	A continuous ionic liquid extraction process for the separation of cobalt from nickel. Green Chemistry, 2013, 15, 3160.	4.6	100
297	A convenient two-step synthesis of dialkylphosphate ionic liquids. Tetrahedron, 2013, 69, 9947-9950.	1.0	6
298	Electrochemical dicarboxylation of conjugated fatty acids as an efficient valorization of carbon dioxide. RSC Advances, 2013, 3, 4634.	1.7	31
299	Electrodeposition of Bismuth Telluride Thermoelectric Films from Chloride-Free Ethylene Glycol Solutions. Journal of the Electrochemical Society, 2013, 160, D196-D201.	1.3	19
300	Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013, 51, 1-22.	4.6	1,704
301	Lanthanidomesogens. Fundamental Theories of Physics, 2013, 43, 1-158.	0.1	13
302	Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chemistry, 2013, 15, 919.	4.6	312
303	lonic Liquids Based on the 7â€Azabicyclo[2.2.1]heptane Skeleton: Synthesis and Properties. European Journal of Organic Chemistry, 2013, 2013, 3741-3750.	1.2	3
304	High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. Journal of Materials Chemistry A, 2013, 1, 5827.	5.2	167
305	Separation of cobalt and nickel by solvent extraction with two mutually immiscible ionic liquids. Physical Chemistry Chemical Physics, 2013, 15, 9663.	1.3	56
306	Adiabatic scanning calorimetry study of ionic liquid crystals with highly ordered crystal smectic phases. Liquid Crystals, 2013, 40, 329-338.	0.9	7

#	Article	IF	Citations
307	Silverâ€Containing Ionic Liquids with Alkylamine Ligands. ChemPlusChem, 2013, 78, 578-588.	1.3	36
308	Rare-Earth Economics: The Balance Problem. Jom, 2013, 65, 846-848.	0.9	112
309	Electrodeposition of germanium from the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide. Physical Chemistry Chemical Physics, 2013, 15, 4955.	1.3	39
310	Separation of Carbon Dioxide from Nitrogen or Methane by Supported Ionic Liquid Membranes (SILMs): Influence of the Cation Charge of the Ionic Liquid. Journal of Physical Chemistry B, 2013, 117, 15131-15140.	1.2	59
311	Synthesis and Properties of Alkoxy―and Alkenyl‧ubstituted Peralkylated Imidazolium Ionic Liquids. ChemPhysChem, 2013, 14, 3503-3516.	1.0	3
312	Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System. International Journal of Molecular Sciences, 2013, 14, 21353-21377.	1.8	87
313	Bis(ethyleneglycolato-κ2O,O′)tellurium(IV). Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1080-o1080.	0.2	0
314	Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligands. CrystEngComm, 2012, 14, 4902.	1.3	37
315	Heteroleptic silver-containing ionic liquids. Dalton Transactions, 2012, 41, 6902.	1.6	36
316	Quinolinium and isoquinolinium ionic liquid crystals. RSC Advances, 2012, 2, 8061.	1.7	48
317	Phenolate platform for anion exchange in ionic liquids. RSC Advances, 2012, 2, 11936.	1.7	23
318	Nematogenic tetracatenar lanthanidomesogens. Dalton Transactions, 2012, 41, 13271.	1.6	8
319	Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 5662.	1.3	62
320	An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chemistry, 2012, 14, 1657.	4.6	202
321	High current density electrodeposition from silver complex ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 1706-1715.	1.3	54
322	Electrodeposition of luminescent composite metal coatings containing rare-earth phosphor particles. Journal of Materials Chemistry, 2012, 22, 5514.	6.7	29
323	Production of ionic liquids by electrodialysis. Separation and Purification Technology, 2012, 97, 90-95.	3.9	35
324	Speciation of Copper(II) Complexes in an Ionic Liquid Based on Choline Chloride and in Choline Chloride/Water Mixtures. Inorganic Chemistry, 2012, 51, 4972-4981.	1.9	111

#	Article	IF	CITATIONS
325	A new metallostar complex based on an aluminum(iii) 8-hydroxyquinoline core as a potential bimodal contrast agent. Dalton Transactions, 2012, 41, 10549.	1.6	30
326	Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer. Physical Chemistry Chemical Physics, 2012, 14, 13624.	1.3	18
327	Tetranuclear d-f Metallostars: Synthesis, Relaxometric, and Luminescent Properties. Inorganic Chemistry, 2012, 51, 8775-8783.	1.9	40
328	Synthesis of glucose esters from cellulose in ionic liquids. Holzforschung, 2012, 66, .	0.9	11
329	Continuous Synthesis of Peralkylated Imidazoles and their Transformation into Ionic Liquids with Improved (Electro)Chemical Stabilities. ChemPhysChem, 2012, 13, 3146-3157.	1.0	29
330	Direct-on-barrier copper electroplating on ruthenium from the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. Journal of Materials Science: Materials in Electronics, 2012, 23, 945-951.	1.1	16
331	Redox reference systems in ionic liquids. Electrochimica Acta, 2012, 76, 242-248.	2.6	29
332	A Selfâ€Assembled Complex with a Titanium(IV) Catecholate Core as a Potential Bimodal Contrast Agent. Chemistry - A European Journal, 2012, 18, 293-302.	1.7	39
333	1,10-Phenanthrolinium Ionic Liquid Crystals. Langmuir, 2011, 27, 2036-2043.	1.6	38
334	Oscillating electrochemical reaction in copper-containing imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 15448.	1.3	11
335	Thermochromic properties of low-melting ionic uranyl isothiocyanate complexes. Chemical Communications, 2011, 47, 4490.	2.2	48
336	A Heterobimetallic Ruthenium–Gadolinium Complex as a Potential Agent for Bimodal Imaging. Inorganic Chemistry, 2011, 50, 10005-10014.	1.9	48
337	Growth of sputter-deposited gold nanoparticles in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 13565.	1.3	69
338	Nitrile-Functionalized Pyridinium, Pyrrolidinium, and Piperidinium Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 8424-8438.	1.2	58
339	CR3: Cornerstone to the sustainable inorganic materials management (SIM2) research program at K.U.Leuven. Jom, 2011, 63, 14-15.	0.9	17
340	A Modular Approach towards the Synthesis of Targetâ€Specific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2011, 2011, 3577-3585.	1.0	19
341	Tâ€Shaped Ionic Liquid Crystals Based on the Imidazolium Motif: Exploring Substitution of the Câ€2 Imidazolium Carbon Atom. Chemistry - A European Journal, 2011, 17, 4291-4306.	1.7	33
342	Copper(I) ontaining Ionic Liquids for Highâ€Rate Electrodeposition. Chemistry - A European Journal, 2011, 17, 5054-5059.	1.7	99

#	Article	IF	Citations
343	Accommodation of the Rare Earths in the Periodic Table. Fundamental Theories of Physics, 2011, 41, 1-93.	0.1	13
344	Electrodeposition from Cationic Cuprous Organic Complexes: Ionic Liquids for High Current Density Electroplating. Journal of the Electrochemical Society, 2011, 158, D21.	1.3	36
345	Electrodeposition from a Liquid Cationic Cuprous Organic Complex for Seed Layer Deposition. Journal of the Electrochemical Society, 2011, 158, D647.	1.3	10
346	Modeling of Aluminium Deposition from Chloroaluminate Ionic Liquids. Journal of the Electrochemical Society, 2011, 158, D634.	1.3	26
347	Direct Cu-on-Ta Electroplating from Ionic Liquids in High Vacuum. ECS Transactions, 2010, 25, 119-128.	0.3	6
348	Reductive Splitting of Cellulose in the Ionic Liquid 1â€Butylâ€3â€Methylimidazolium Chloride. ChemSusChem, 2010, 3, 91-96.	3.6	64
349	Synthesis, Structure, and Spectroscopic Properties of the New Lanthanum(III) Fluoride Oxomolybdate(VI) La ₃ FMo ₄ O ₁₆ . European Journal of Inorganic Chemistry, 2010, 2010, 1626-1632.	1.0	11
350	Cobalt(II) Complexes of Nitrileâ€Functionalized Ionic Liquids. Chemistry - A European Journal, 2010, 16, 1849-1858.	1.7	59
351	Hydrogen Bonding Versus van der Waals Interactions: Competitive Influence of Noncovalent Interactions on 2D Selfâ€Assembly at the Liquid–Solid Interface. Chemistry - A European Journal, 2010, 16, 14447-14458.	1.7	88
352	Symmetry and electronic states of Mn2+ in ZnS nanowires with mixed hexagonal and cubic stacking. Applied Physics Letters, 2010, 97, 041918.	1.5	6
353	Influence of the anion on the electrical conductivity and glass formation of 1-butyl-3-methylimidazolium ionic liquids. Journal of Chemical Physics, 2010, 133, 034503.	1.2	64
354	Europium(iii)-doped liquid-crystalline physical gels. Journal of Materials Chemistry, 2010, 20, 8571.	6.7	26
355	Uranyl Complexes of Carboxyl-Functionalized Ionic Liquids. Inorganic Chemistry, 2010, 49, 3351-3360.	1.9	89
356	Hydrophobic ionic liquids with strongly coordinating anions. Chemical Communications, 2010, 46, 234-236.	2.2	142
357	Ionic liquid as plasticizer for europium(iii)-doped luminescent poly(methyl methacrylate) films. Physical Chemistry Chemical Physics, 2010, 12, 1879-1885.	1.3	143
358	Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Transactions, 2010, 39, 8377.	1.6	223
359	Spontaneous product segregation from reactions in ionic liquids: application in Pd-catalyzed aliphatic alcohol oxidation. Physical Chemistry Chemical Physics, 2010, 12, 1741-1749.	1.3	30
360	Product recovery from ionic liquids by solvent-resistant nanofiltration: application to ozonation of acetals and methyl oleate. Green Chemistry, 2010, 12, 1726.	4.6	26

#	Article	IF	Citations
361	Cellulose conversion into alkylglycosides in the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2010, 12, 1790.	4.6	44
362	Speciation of Rareâ€Earth Metal Complexes in Ionic Liquids: A Multipleâ€Technique Approach. Chemistry - A European Journal, 2009, 15, 1449-1461.	1.7	91
363	Pyrrolidinium Ionic Liquid Crystals. Chemistry - A European Journal, 2009, 15, 656-674.	1.7	127
364	(Tetracycline)europium(III) Complex as Luminescent Probe for Hydrogen Peroxide Detection. Helvetica Chimica Acta, 2009, 92, 2387-2397.	1.0	11
365	Ceric ammonium nitrate (CAN) as oxidizing or nitrating reagent for organic reactions in ionic liquids. Tetrahedron Letters, 2009, 50, 4582-4586.	0.7	27
366	Lanthanide(III) Complexes of Pyridine- <i>N</i> Oxide Analogues of DOTA in Solution and in the Solid State. A New Kind of Isomerism in Complexes of DOTA-like Ligands. Inorganic Chemistry, 2009, 48, 466-475.	1.9	43
367	Pyrrolidinium Ionic Liquid Crystals with Pendant Mesogenic Groups. Langmuir, 2009, 25, 5881-5897.	1.6	66
368	3,5-Dianilino Substituted Difluoroboron Dipyrromethene: Synthesis, Spectroscopy, Photophysics, Crystal Structure, Electrochemistry, and Quantum-Chemical Calculations. Journal of Physical Chemistry C, 2009, 113, 11731-11740.	1.5	61
369	Thermotropic Ruthenium(II)-Containing Metallomesogens Based on Substituted 1,10-Phenanthroline Ligands. Inorganic Chemistry, 2009, 48, 2490-2499.	1.9	40
370	Lanthanide-Based Luminescent Hybrid Materials. Chemical Reviews, 2009, 109, 4283-4374.	23.0	2,989
371	Piperidinium, Piperazinium and Morpholinium Ionic Liquid Crystals. Journal of Physical Chemistry B, 2009, 113, 9506-9511.	1.2	100
372	Luminescence of metallomesogens in the liquid crystal state. Journal of Materials Chemistry, 2009, 19, 448-453.	6.7	147
373	Polarized Luminescence of Non-mesogenic Europium(III) Complexes Doped into a Nematic Liquid Crystal. Journal of Physical Chemistry B, 2009, 113, 10575-10579.	1.2	25
374	Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chemistry, 2009, 11, 1357.	4.6	169
375	Oxidation of cyclic acetals by ozone in ionic liquid media. Chemical Communications, 2009, , 6439.	2.2	15
376	Synthesis, Spectroscopy, Crystal Structure, Electrochemistry, and Quantum Chemical and Molecular Dynamics Calculations of a 3-Anilino Difluoroboron Dipyrromethene Dye. Journal of Physical Chemistry A, 2009, 113, 439-447.	1.1	98
377	Temperature-Driven Mixing-Demixing Behavior of Binary Mixtures of the Ionic Liquid Choline Bis(trifluoromethylsulfonyl)imide and Water. Journal of Physical Chemistry B, 2009, 113, 1429-1437.	1.2	102
378	Visible and Near-Infrared Emission by Samarium(III)-Containing Ionic Liquid Mixtures. Inorganic Chemistry, 2009, 48, 3018-3026.	1.9	131

#	Article	IF	Citations
379	Luminescence of LaF ₃ :Ln ³⁺ Nanocrystal Dispersions in Ionic Liquids. Journal of Physical Chemistry C, 2009, 113, 13532-13538.	1.5	43
380	Lanthanide-doped luminescent ionogels. Dalton Transactions, 2009, , 298-306.	1.6	142
381	Listening to Lanthanide Complexes: Determination of the Intrinsic Luminescence Quantum Yield by Nonradiative Relaxation. ChemPhysChem, 2008, 9, 600-606.	1.0	36
382	Catalytic Hydrogenolysis of Aromatic Ketones in Mixed Choline–Betainium Ionic Liquids. ChemSusChem, 2008, 1, 997-1005.	3.6	32
383	Liquidâ€Crystalline Ternary Rareâ€Earth Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 756-761.	1.0	38
384	Polarized Luminescence from Aligned Samples of Nematogenic Lanthanide Complexes. Advanced Materials, 2008, 20, 252-257.	11.1	126
385	Synthesis of a neodymium-quinolate complex for near-infrared electroluminescence applications. Thin Solid Films, 2008, 516, 5098-5102.	0.8	33
386	Crystal structure and ab initio calculations of a cyano-carbamimidic acid ethyl ester. Journal of Molecular Structure, 2008, 885, 97-103.	1.8	2
387	Temperature dependence of the electrical conductivity of imidazolium ionic liquids. Journal of Chemical Physics, 2008, 128, 064509.	1.2	169
388	Polynuclear Metal Complexes Obtained from the Task-Specific Ionic Liquid Betainium Bistriflimide. Crystal Growth and Design, 2008, 8, 1353-1363.	1.4	93
389	Imidazo $[4,5-\langle i\rangle f\langle i\rangle]$ -1,10-phenanthrolines: Versatile Ligands for the Design of Metallomesogens. Chemistry of Materials, 2008, 20, 1278-1291.	3.2	91
390	Rigid tetracatenar liquid crystals derived from 1,10-phenanthroline. Soft Matter, 2008, 4, 2172.	1.2	34
391	Copper(II) 15-metallacrown-5 lanthanide(III) complexes derived from l-serine and l-threonine hydroxamic acids. Journal of Alloys and Compounds, 2008, 451, 38-41.	2.8	10
392	Lanthanide–surfactant-combined catalysts for the allylation of benzaldehyde with tetraallyltin in aqueous solutions. Journal of Alloys and Compounds, 2008, 451, 418-421.	2.8	14
393	Carboxyl-Functionalized Task-Specific Ionic Liquids for Solubilizing Metal Oxides. Inorganic Chemistry, 2008, 47, 9987-9999.	1.9	232
394	YF[MoO4] and YCl[MoO4]: Two Halide Derivatives of Yttrium ortho-Oxomolybdate: Syntheses, Structures, and Luminescence Properties. Inorganic Chemistry, 2008, 47, 3728-3735.	1.9	27
395	Pressure-Induced Phase Transitions on a Liquid Crystalline Europium(III) Complex. Journal of Physical Chemistry B, 2008, 112, 5291-5295.	1.2	5
396	Imidazolium Ionic Liquid Crystals with Pendant Mesogenic Groups. Chemistry of Materials, 2008, 20, 157-168.	3.2	143

#	Article	IF	Citations
397	Tris(1-ethyl-3-methylimidazolium) hexabromidoeuropate(III). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m945-m945.	0.2	7
398	Influence of the Anion on the Electrodeposition of Cobalt from Imidazolium Ionic Liquids. Electrochemical and Solid-State Letters, 2007, 10, D104.	2.2	44
399	Choline Saccharinate and Choline Acesulfamate:Â Ionic Liquids with Low Toxicities. Journal of Physical Chemistry B, 2007, 111, 5254-5263.	1.2	224
400	Rare-Earth Complexes of Ferrocene-Containing Ligands:  Visible-Light Excitable Luminescent Materials. Inorganic Chemistry, 2007, 46, 5302-5309.	1.9	85
401	Gadolinium(iii) complexes of mono- and diethyl esters of monophosphonic acid analogue of DOTA as potential MRI contrast agents: solution structures and relaxometric studies. Dalton Transactions, 2007, , 493-501.	1.6	72
402	Speciation of Uranyl Complexes in Ionic Liquids by Optical Spectroscopy. Inorganic Chemistry, 2007, 46, 11335-11344.	1.9	112
403	Magnetic Alignment Study of Rare-Earth-Containing Liquid Crystals. Journal of Physical Chemistry B, 2007, 111, 13881-13885.	1.2	46
404	Lanthanides and Actinides in Ionic Liquids. Chemical Reviews, 2007, 107, 2592-2614.	23.0	616
405	Imidazolium Ionic Liquids as Solvents for Cerium(IV)-Mediated Oxidation Reactions. Journal of Organic Chemistry, 2007, 72, 517-524.	1.7	86
406	Rare-Earth Nitroquinolinates: Visible-Light-Sensitizable Near-Infrared Emitters in Aqueous Solution. European Journal of Inorganic Chemistry, 2007, 2007, 302-305.	1.0	31
407	Bis(phenylethylamide) Derivatives of Gd-DTPA as Potential Receptor-Specific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2007, 2007, 2061-2067.	1.0	23
408	Speciation of Uranyl Nitrato Complexes in Acetonitrile and in the Ionic Liquid 1â∈Butylâ€3â€methylimidazolium Bis(trifluoromethylsulfonyl)imide. European Journal of Inorganic Chemistry, 2007, 2007, 5120-5126.	1.0	57
409	Lanthanide(III) nitrobenzenesulfonates and p-toluenesulfonate complexes of lanthanide(III), iron(III), and copper(II) as novel catalysts for the formation of calix[4]resorcinarene. Tetrahedron, 2007, 63, 9063-9070.	1.0	12
410	Organo-lanthanide complexes as luminescent dopants in polymer waveguides fabricated by hot embossing. Optical Materials, 2007, 29, 1798-1808.	1.7	31
411	Optical properties of planar polymer waveguides doped with organo-lanthanide complexes. Optical Materials, 2007, 29, 1821-1830.	1.7	26
412	Near-infrared photoluminescence of lanthanide complexes containing the hemicyanine chromophore. Polyhedron, 2007, 26, 5441-5447.	1.0	14
413	Near-infrared luminescence emitted by an electrically switched liquid crystal cell. Journal of Luminescence, 2007, 127, 611-615.	1.5	22
414	Bis{2-[(2-hydroxyethyl)iminomethyl]phenolato}gold(III) tetrachloroaurate(III). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m402-m404.	0.2	1

#	Article	IF	Citations
415	Di-μ-chloro-bis({2-[(2-hydroxyethyl)iminomethyl]phenolato-κ3N,O,O′}nickel(II)) methanol solvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m569-m571.	0.2	3
416	Dichloridobis(picolinohydrazide)cadmium(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m3187-m3187.	0.2	1
417	Luminescent Ionogels Based on Europium-Doped Ionic Liquids Confined within Silica-Derived Networks. Chemistry of Materials, 2006, 18, 5711-5715.	3.2	231
418	Anionic Rare-Earth Thiocyanate Complexes as Building Blocks for Low-Melting Metal-Containing Ionic Liquids. Journal of the American Chemical Society, 2006, 128, 13658-13659.	6.6	183
419	Visible-Light-Sensitized Near-Infrared Luminescence from Rare-Earth Complexes of the 9-Hydroxyphenalen-1-one Ligand. Inorganic Chemistry, 2006, 45, 10416-10418.	1.9	51
420	Task-Specific Ionic Liquid for Solubilizing Metal Oxides. Journal of Physical Chemistry B, 2006, 110, 20978-20992.	1.2	412
421	Lanthanide-Containing Metallomesogens with Low Transition Temperatures. Chemistry of Materials, 2006, 18, 3698-3704.	3.2	56
422	Two-Dimensional Self-Assembly and Phase Behavior of an Alkoxylated Sandwich-Type Bisphthalocyanine and Its Phthalocyanine Analogues at the Liquidâ^Solid Interface. Langmuir, 2006, 22, 723-728.	1.6	41
423	Chapter 229 Applications of tetravalent cerium compounds. Fundamental Theories of Physics, 2006, 36, 281-392.	0.1	29
424	Strong luminescence of rare earth compounds in ionic liquids: Luminescent properties of lanthanide(III) iodides in the ionic liquid 1-dodecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Journal of Alloys and Compounds, 2006, 418, 204-208.	2.8	64
425	Luminescent europium(III) and terbium(III) nicotinate complexes covalently linked to a 1,10-phenanthroline functionalised sol–gel glass. Journal of Luminescence, 2006, 117, 163-169.	1.5	37
426	Paramagnetic liposomes containing amphiphilic bisamide derivatives of Gd-DTPA with aromatic side chain groups as possible contrast agents for magnetic resonance imaging. European Biophysics Journal, 2006, 35, 136-144.	1.2	30
427	Ionic Liquid Crystals. ChemInform, 2006, 37, no.	0.1	2
428	Relaxometric Study of Copper [15]Metallacrown-5 Gadolinium Complexes Derived from α-Aminohydroxamic Acids. Chemistry - A European Journal, 2006, 12, 204-210.	1.7	38
429	Dinuclear Lanthanide Schiff-Base Complexes Forming a Rectangular Columnar Mesophase. European Journal of Inorganic Chemistry, 2006, 2006, 150-157.	1.0	40
430	Mandelohydroxamic Acid as Ligand for Copper(II) 15-Metallacrown-5 Lanthanide(III) and Copper(II) 15-Metallacrown-5 Uranyl Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1466-1474.	1.0	22
431	Study of Thermodynamic and Kinetic Stability of Transition Metal and Lanthanide Complexes of DTPA Analogues with a Phosphorus Acid Pendant Arm. European Journal of Inorganic Chemistry, 2006, 2006, 1976-1986.	1.0	31
432	Pharmacokinetic andin vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity. Contrast Media and Molecular Imaging, 2006, 1, 267-278.	0.4	39

#	Article	IF	Citations
433	Spectroscopic properties of neodymium(III)-containing polyoxometalates in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 478-482.	2.0	13
434	Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol–gel glasses. Journal of Luminescence, 2005, 114, 77-84.	1.5	53
435	Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films. Thin Solid Films, 2005, 491, 264-269.	0.8	49
436	Intense near-infrared luminescence of anhydrous lanthanide(III) iodides in an imidazolium ionic liquid. Chemical Physics Letters, 2005, 402, 75-79.	1.2	116
437	Purification of imidazolium ionic liquids for spectroscopic applications. Chemical Physics Letters, 2005, 415, 131-136.	1.2	240
438	Rare-earth beta-diketonates. Fundamental Theories of Physics, 2005, 35, 107-272.	0.1	323
439	Thin Films of Highly Luminescent Lanthanide Complexes Covalently Linked to an Organicâ^Inorganic Hybrid Material via 2-Substituted Imidazo[4,5-f]-1,10-phenanthroline Groups. Chemistry of Materials, 2005, 17, 5194-5201.	3.2	217
440	Photostability of a highly luminescent europium \hat{l}^2 -diketonate complex in imidazolium ionic liquids. Chemical Communications, 2005, , 4354.	2.2	190
441	Visible light sensitisation of europium(iii) luminescence in a 9-hydroxyphenal-1-one complex. Chemical Communications, 2005, , 590.	2.2	73
442	Alkali-Metal Salts of Aromatic Carboxylic Acids: Liquid Crystals without Flexible Chains. European Journal of Inorganic Chemistry, 2005, 2005, 563-571.	1.0	31
443	Mixed f-d Metallomesogens with an Extended Rigid Core. European Journal of Inorganic Chemistry, 2005, 2005, 1506-1513.	1.0	24
444	Lanthanide(III)-Induced Conversion of 12-Metallacrown-4 to 5-Metallacrown-5 Complexes in Solution. European Journal of Inorganic Chemistry, 2005, 2005, 3303-3310.	1.0	29
445	Lanthanide(III) Tosylates as New Acylation Catalysts. European Journal of Organic Chemistry, 2005, 2005, 1810-1815.	1.2	22
446	Synthesis, Characterization, and Pharmacokinetic Evaluation of a Potential MRI Contrast Agent Containing Two Paramagnetic Centers with Albumin Binding Affinity. Chemistry - A European Journal, 2005, 11, 3077-3086.	1.7	47
447	Pentacopper(II) complexes of α-aminohydroxamic acids: uranyl-induced conversion of a 12-metallacrown-4 to a 15-metallacrown-5. Journal of Inorganic Biochemistry, 2005, 99, 497-504.	1.5	21
448	Cyclam (1,4,8,11-tetraazacyclotetradecane) with one methylphosphonate pendant arm: a new ligand for selective copper(ii) binding. Dalton Transactions, 2005, , 2908.	1.6	46
449	lonic Liquid Crystals. Chemical Reviews, 2005, 105, 4148-4204.	23.0	1,072
450	A Propeller-like Uranyl Metallomesogen. Journal of the American Chemical Society, 2005, 127, 17602-17603.	6.6	51

#	Article	IF	CITATIONS
451	Covalent Coupling of Luminescent Tris(2-thenoyltrifluoroacetonato)lanthanide(III) Complexes on a Merrifield Resin. Chemistry of Materials, 2005, 17, 2148-2154.	3.2	193
452	Design of High Coordination Number Metallomesogens by Decoupling of the Complex-Forming and Mesogenic Groups:  Nematic and Lamello-Columnar Mesophases. Chemistry of Materials, 2005, 17, 6589-6598.	3.2	113
453	A luminescent tris(2-thenoyltrifluoroacetonato)europium(iii) complex covalently linked to a 1,10-phenanthroline-functionalised sol–gel glass. Journal of Materials Chemistry, 2004, 14, 191-195.	6.7	328
454	Gadolinium DTPA-Monoamide Complexes Incorporated into Mixed Micelles as Possible MRI Contrast Agents. European Journal of Inorganic Chemistry, 2004, 2004, 3538-3543.	1.0	59
455	Lanthanide(III) Nitrobenzenesulfonates as New Nitration Catalysts: The Role of the Metal and of the Counterion in the Catalytic Efficiency. European Journal of Organic Chemistry, 2004, 2004, 4560-4566.	1.2	16
456	Lanthanide(III) nosylates as new nitration catalysts. Tetrahedron Letters, 2004, 45, 3137-3139.	0.7	52
457	lonic liquids as solvents for near-infrared emitting lanthanide complexes. Chemical Physics Letters, 2004, 395, 306-310.	1.2	87
458	Strong erbium luminescence in the near-infrared telecommunication window. Chemical Physics Letters, 2004, 397, 447-450.	1.2	65
459	Spectroscopic properties of uranyl crown ether complexes in non-aqueous solvents. Physical Chemistry Chemical Physics, 2004, 6, 2946-2950.	1.3	17
460	Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. Physical Chemistry Chemical Physics, 2004, 6, 3292-3298.	1.3	53
461	Structure and Mesomorphism of Silver Alkanoates. Chemistry of Materials, 2004, 16, 2021-2027.	3.2	79
462	Temperature-driven luminescence switching of europium(III) in a glass dispersed liquid crystal film. Liquid Crystals, 2004, 31, 601-605.	0.9	23
463	Lanthanide(III) complexes of aromatic sulfonic acids as catalysts for the nitration of toluene. Journal of Alloys and Compounds, 2004, 374, 46-49.	2.8	21
464	Heterobimetallic gadolinium(III)–iron(III) complex of DTPA-bis(3-hydroxytyramide). Journal of Alloys and Compounds, 2004, 374, 325-329.	2.8	15
465	Near-Infrared Luminescence of Lanthanide Calcein and Lanthanide Dipicolinate Complexes Doped into a Silicaâ~'PEG Hybrid Material. Chemistry of Materials, 2004, 16, 1531-1535.	3.2	110
466	Rare-Earth Quinolinates:Â Infrared-Emitting Molecular Materials with a Rich Structural Chemistry. Inorganic Chemistry, 2004, 43, 8461-8469.	1.9	124
467	Judd–Ofelt analysis of lanthanide doped silica–PEG hybrid sol–gels. Physical Chemistry Chemical Physics, 2003, 5, 198-202.	1.3	23
468	Lanthanide Liquid Crystalline Complexes with Perfluoroalkylsulfate Anion. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2003, 29, 357-361.	0.3	2

#	Article	IF	Citations
469	Potential MRI Contrast Agents Based on Micellar Incorporation of Amphiphilic Bis(alkylamide) Derivatives of [(Gdâ^'DTPA)(H2O)]2â^'. European Journal of Inorganic Chemistry, 2003, 2003, 3021-3027.	1.0	67
470	Adducts of Schiff Bases with $Tris(\hat{l}^2$ -diketonato)lanthanide(III) Complexes: Structure and Liquid-Crystalline Behaviour. European Journal of Inorganic Chemistry, 2003, 2003, 3028-3033.	1.0	23
471	Title is missing!. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 975-980.	0.6	7
472	Influence of the Chain Length on the Thermal Behavior of Lanthanide(III) 4-Alkoxybenzoates. Chemistry of Materials, 2003, 15, 212-217.	3.2	18
473	Structure and Mesomorphic Behavior of Alkoxy-Substituted Bis(phthalocyaninato)lanthanide(III) Complexes. Chemistry of Materials, 2003, 15, 3930-3938.	3.2	77
474	Halogen substitution as an efficient tool to increase the near-infrared photoluminescence intensity of erbium(iii) quinolinates in non-deuterated DMSO. Physical Chemistry Chemical Physics, 2003, 5, 2754-2757.	1.3	59
475	Near-infrared photoluminescence of lanthanide-doped liquid crystals. Journal of Materials Chemistry, 2003, 13, 1520-1522.	6.7	104
476	Liquid-crystalline azines formed by the rare-earth promoted decomposition of hydrazide "habbe― ligands: structural and thermal properties. Journal of Materials Chemistry, 2003, 13, 1639-1645.	6.7	32
477	Trimetallic Nickel–Lanthanum and Nickel–Gadolinium Metallomesogens. Supramolecular Chemistry, 2003, 15, 485-494.	1.5	18
478	Mesophase behaviour and thermal stability of octa-alkoxy substituted phthalocyaninatocobalt (II) complexes. Liquid Crystals, 2003, 30, 143-148.	0.9	7
479	Influence of the ligand structure on the liquid crystalline properties of lanthanide-containing salicylaldimine mesogens. Liquid Crystals, 2003, 30, 479-486.	0.9	8
480	Liquid-crystalline metallophthalocyanines containing late first-row transition metals. Arkivoc, 2003, 2003, 68-82.	0.3	14
481	Crystal structure of tris(.V-(n-butyl)-4-methoxy-2-hydroxyhen/.aldimine)- tris(nitrato)europium(III), Eu(LH)3(NO3)3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2003, 218, 118-120.	0.1	0
482	Crystal structure of tris(N-(n-butyl)-4-methoxy-2-hydroxybenzaldimine)-tris(nitrato)lanthanum(III),La(C12H17NO2)3(NO3)3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2003, 218, 520-522.	0.1	0
483	Mesomorphism of lanthanide-containing Schiff's base complexes with chloride counterions. Liquid Crystals, 2002, 29, 1209-1216.	0.9	17
484	Narrow band photoluminescence of europium-doped liquid crystals. Journal of Materials Chemistry, 2002, 12, 3374-3376.	6.7	73
485	Influence of heat treatment on the intensities of f–f transitions in lanthanide-doped sol–gel glasses. Physical Chemistry Chemical Physics, 2002, 4, 552-555.	1.3	25
486	Lanthanide-Containing Liquid Crystals and Surfactants. Chemical Reviews, 2002, 102, 2303-2346.	23.0	491

#	Article	IF	CITATIONS
487	Thermal and optical behaviour of octa-alkoxy substituted phthalocyaninatovanadyl complexes. Liquid Crystals, 2002, 29, 1425-1433.	0.9	21
488	Luminescent lanthanide complexes with liquid crystalline properties. Liquid Crystals, 2002, 29, 1581-1584.	0.9	29
489	Nature of equilibrium shifts in racemic praseodymium(iii) tris(2,2′-oxydiacetate) induced by interaction with chiral probes. Dalton Transactions RSC, 2002, , 1602-1606.	2.3	18
490	Mixed Copper–Lanthanide Metallomesogens. Chemistry - A European Journal, 2002, 8, 1101.	1.7	64
491	Room-temperature magnetic anisotropy of lanthanide complexes: A model study for various coordination polyhedra. Journal of Chemical Physics, 2002, 116, 4673-4685.	1.2	98
492	Crystal structure of lanthanum(III) butyrate monohydrate. Journal of Alloys and Compounds, 2001, 323-324, 142-146.	2.8	11
493	Mesomorphic behaviour of praseodymium(III) alkanoates. Liquid Crystals, 2001, 28, 819-825.	0.9	25
494	Rare-earth complexes of mesomorphic Schiff's base ligands. Liquid Crystals, 2001, 28, 279-285.	0.9	20
495	Molecular First Hyperpolarizability Data for Lanthanate Complexes Containing the Hemicyanine Chromophore. Journal of Physical Chemistry B, 2001, 105, 5169-5173.	1.2	27
496	Optical properties of vitrified rare-earth soaps. Physical Chemistry Chemical Physics, 2001, 3, 4796-4799.	1.3	17
497	Induced Mesophases in Binary Mixtures of Lanthanide(III) Dodecanoates. Chemistry of Materials, 2001, 13, 2243-2246.	3.2	22
498	Investigation of thermal properties of glassy itraconazole: identification of a monotropic mesophase. Thermochimica Acta, 2001, 376, 175-181.	1.2	100
499	Mesomorphic behaviour of cerium(III) alkanoates. Materials Science and Engineering C, 2001, 18, 199-204.	3.8	20
500	Lanthanide containing Schiff's base complexes with chloride counter-ions: mesomorphic properties. Materials Science and Engineering C, 2001, 18, 211-215.	3.8	17
501	Lanthanide complexes of Schiff base ligands containing three aromatic rings: synthesis and thermal behaviour. Materials Science and Engineering C, 2001, 18, 217-221.	3.8	14
502	Synthesis, spectral and mesomorphic properties of octa-alkoxy substituted phthalocyanine ligands and lanthanide complexes. Materials Science and Engineering C, 2001, 18, 229-238.	3.8	93
503	Anisotropic molecular magnetic materials based on liquid-crystalline lanthanide complexes. Materials Science and Engineering C, 2001, 18, 247-254.	3.8	37
504	Spectroscopic properties of monolithic sol–gel glasses doped with lanthanide bipyridyl complexes. Materials Science and Engineering C, 2001, 18, 255-258.	3.8	21

#	Article	IF	CITATIONS
505	Probing the Magnetic Anisotropy of Lanthanide-Containing Metallomesogens by Luminescence Spectroscopy. ChemPhysChem, 2001, 2, 680-683.	1.0	45
506	Absolute Configuration Assignment of D3-Symmetric Lanthanide Complexes Based on Circular Dichroism Induced by Interaction with a Chiral Probe. ChemPhysChem, 2001, 2, 767.	1.0	12
507	Synthesis, Mesomorphism, and Unusual Magnetic Behaviour of Lanthanide Complexes with Perfluorinated Counterions. Chemistry - A European Journal, 2001, 7, 99-105.	1.7	60
508	Coordinatively Unsaturated Metal Centers as Building Blocks for High Coordination Number Metallomesogens. Angewandte Chemie - International Edition, 2001, 40, 242-244.	7.2	34
509	Influence of crystal-field perturbations on the room-temperature magnetic anisotropy of lanthanide complexes. Chemical Physics Letters, 2001, 345, 132-140.	1.2	38
510	Thermal behaviour of lanthanum(III) alkanoates. Liquid Crystals, 2001, 28, 1727-1733.	0.9	29
511	Lyotropic mesomorphism of rare-earth trisalkylsulphates in the water-ethylene glycol system. Liquid Crystals, 2001, 28, 1877-1879.	0.9	14
512	Mesomorphic Complexes of the Lanthanide Elements. Molecular Crystals and Liquid Crystals, 2001, 364, 745-752.	0.3	9
513	Mesomorphism of lanthanide-containing Schiff's base complexes with dodecyl sulphate counterions. Liquid Crystals, 2001, 28, 621-627.	0.9	31
514	Hyper-Rayleigh scattering in the Fourier domain for higher precision: Correcting for multiphoton fluorescence with demodulation and phase data. Review of Scientific Instruments, 2001, 72, 3215-3220.	0.6	64
515	Lanthanide(III) Dodecanoates: Structure, Thermal Behaviour, and Ion-Size Effects on the Mesomorphism. European Journal of Inorganic Chemistry, 2000, 2000, 1429-1436.	1.0	47
516	Rare-Earth-Containing Magnetic Liquid Crystals. Journal of the American Chemical Society, 2000, 122, 4335-4344.	6.6	252
517	On the magnetic anisotropy of lanthanide-containing metallomesogens. Journal of Chemical Physics, 2000, 113, 10293-10303.	1.2	58
518	Stilbazolium dyes containing rare-earth ions. Journal of Alloys and Compounds, 2000, 303-304, 125-131.	2.8	6
519	Mesomorphic lanthanide complexes with azomethine ligands. Journal of Alloys and Compounds, 2000, 303-304, 146-150.	2.8	20
520	Spectroscopic study of neodymium soaps in 1-pentanol. Journal of Alloys and Compounds, 2000, 303-304, 387-392.	2.8	8
521	Spectroscopic behaviour of lanthanide(III) coordination compounds with Schiff base ligands. Physical Chemistry Chemical Physics, 2000, 2, 3753-3757.	1.3	40
522	Supramolecular liquid crystals formed by hydrogen bonding between a benzocrown-bearing stilbazole and carboxylic acids. Liquid Crystals, 2000, 27, 851-858.	0.9	25

#	Article	IF	CITATIONS
523	Structure and Mesomorphism of Neodymium(III) Alkanoates. Inorganic Chemistry, 2000, 39, 5938-5945.	1.9	60
524	On the mesomorphism of lanthanum (III) alkanoates. Liquid Crystals, 1999, 26, 1717-1721.	0.9	22
525	Spectroscopic properties of uranyl ions in fluorophosphate glasses. Journal of Physics Condensed Matter, 1999, 11, 4283-4287.	0.7	8
526	On the reported mesomorphism of lanthanide complexes containing the hemicyanine structural unit. Liquid Crystals, 1999, 26, 771-774.	0.9	12
527	Liquid-Crystalline Lanthanide Complexes. Materials Science Forum, 1999, 315-317, 169-174.	0.3	11
528	Solvatochromism of lanthanide complexes containing the hemicyanine chromophore. Journal of Molecular Liquids, 1999, 83, 283-294.	2.3	24
529	Influence of the lanthanide contraction on the transition temperatures of rare-earth containing metallomesogens with Schiff base ligands. Chemical Physics Letters, 1999, 300, 509-514.	1.2	51
530	Visualisation of the reliability of Judd–Ofelt intensity parameters by graphical simulation of the absorption spectrum. Chemical Physics Letters, 1999, 303, 76-80.	1.2	20
531	Ionic Liquid Crystals with Hemicyanine Chromophores. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 63-73.	1.6	11
532	Synthesis and mesogenic properties of azomethine complexes of lanthanides with alkyl sulfate anions. Russian Chemical Bulletin, 1999, 48, 385-387.	0.4	22
533	<title>Spectroscopic properties of trivalent samarium ions in glasses</title> ., 1999,,.		45
534	Judd–Ofelt intensity parameters of trivalent lanthanide ions in a NaPO3–BaF2 based fluorophosphate glass. Journal of Alloys and Compounds, 1999, 283, 59-65.	2.8	81
535	Spectroscopic properties of tetravalent uranium in glasses. Journal of Alloys and Compounds, 1999, 285, 105-111.	2.8	11
536	Magneto-optical properties of neodymium-doped LiYF4. Journal of Alloys and Compounds, 1999, 291, 300-311.	2.8	21
537	Optical study of halide modified sulfide glasses containing neodymium ions. Journal of Non-Crystalline Solids, 1999, 256-257, 383-389.	1.5	24
538	Towards magnetic liquid crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 3063-3077.	1.6	49
539	Optical properties of Nd3+-doped fluorophosphate glasses. Journal of Alloys and Compounds, 1998, 275-277, 455-460.	2.8	40
540	Spectroscopic properties of the trivalent terbium ion in the huntite matrix TbAl3(BO3)4. Journal of Alloys and Compounds, 1998, 274, 157-163.	2.8	49

#	Article	IF	CITATIONS
541	Spectroscopic properties of trivalent lanthanide ions in fluorophosphate glasses. Journal of Non-Crystalline Solids, 1998, 238, 11-29.	1.5	128
542	Spectroscopic properties of LiErF4. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 843-849.	1.7	8
543	Spectroscopic properties of KY3F10:Er3+. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1671-1674.	1.7	16
544	Reduction of the transition temperatures in mesomorphic lanthanide complexes by the exchange of counter-ions. Journal of Materials Chemistry, 1998, 8, 1551-1553.	6.7	59
545	Are the Judd - Ofelt intensity parameters sensitive enough to reflect small compositional changes in lanthanide-doped glasses?. Journal of Physics Condensed Matter, 1998, 10, L167-L170.	0.7	27
546	Optical properties of -doped fluorophosphate glasses. Journal of Physics Condensed Matter, 1998, 10, 7231-7241.	0.7	56
547	Chapter 167 Spectral intensities of f-f transitions. Fundamental Theories of Physics, 1998, , 101-264.	0.1	331
548	Optical absorption spectra of in (YGG). Journal of Physics Condensed Matter, 1997, 9, 1637-1648.	0.7	22
549	Absorption and magnetic circular dichroism spectra of praseodymium doped fluorozirconate (ZBLAN) glass. Journal of Alloys and Compounds, 1997, 250, 321-325.	2.8	26
550	Crystal field analysis of EuCl3.6H2O. Journal of Alloys and Compounds, 1997, 250, 326-331.	2.8	19
551	Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution. Chemical Physics Letters, 1997, 266, 297-302.	1.2	121
552	Spectroscopic properties of Gd3+-doped fluorozirconate glass. Chemical Physics Letters, 1997, 280, 333-338.	1.2	71
553	Optical absorption and magnetic circular dichroism spectra of neodymium doped fluorozirconate (ZBLAN) glass. Journal of Non-Crystalline Solids, 1996, 204, 178-187.	1.5	24
554	Magnetic circular dichroism and optical absorption spectra of Eu3+in Y3Al5O12(YAG). Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2487-2493.	1.7	20
555	Polarized absorption spectra of. Journal of Physics Condensed Matter, 1996, 8, 1267-1279.	0.7	8
556	Chapter 155 Rationalization of crystal-field parametrization. Fundamental Theories of Physics, 1996, , 121-283.	0.1	294
557	Magnetic circular dichroism of Na3Nd(ODA)3â‹2NaClO4â‹6H2O. Journal of Chemical Physics, 1996, 105, 6117-6127.	1.2	17
558	On the color of the trivalent lanthanide ions. Chemical Physics Letters, 1995, 235, 163-174.	1.2	166

#	Article	IF	Citations
559	A simple model for crystal field splittings of the 7F1 and 5D1 energy levels of Eu3+. Chemical Physics Letters, 1995, 245, 75-78.	1.2	69
560	Intensity parametrisation of LiYF4:Eu3+. Journal of Alloys and Compounds, 1995, 225, 71-74.	2.8	8
561	Magnetic circular dichroism and optical absorption spectra of holmium-doped fluorozirconate (ZBLAN) glass: a prospective study. Journal of Alloys and Compounds, 1995, 225, 80-84.	2.8	11
562	Optical absorption spectra, crystal-field energy levels and intensities of Eu3+in GdAl3(BO3)4. Journal of Physics Condensed Matter, 1994, 6, 7797-7812.	0.7	27
563	Magnetic circular dichroism of Na3Eu(ODA)3â«2NaClO4â«6H2O. Journal of Chemical Physics, 1994, 100, 815-823.	1.2	24
564	Magnetic circular dichroism for generating crystal wave functions. Journal of Alloys and Compounds, 1994, 207-208, 51-54.	2.8	5
565	Crystal-field analysis of Eu3+in LiYF4. Journal of Physics Condensed Matter, 1993, 5, 8359-8374.	0.7	29
566	Closing the Loop in Ion Flotation: Recovery of Copper, Regeneration and Reuse of Collector from the Foam Phase by a Solvometallurgical Process. Journal of Sustainable Metallurgy, $0, 1$.	1.1	2
567	Extraction Behavior and Purification of Germanium Using an Undiluted Quaternary Ammonium Ionic Liquid in Combination with a Complexing Agent. Industrial & Engineering Chemistry Research, 0, , .	1.8	1