Frank Schlawin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946396/publications.pdf

Version: 2024-02-01

50 papers 1,476 citations

20 h-index 315739 38 g-index

54 all docs

54 docs citations

times ranked

54

1078 citing authors

#	Article	IF	CITATIONS
1	Cavity quantum materials. Applied Physics Reviews, 2022, 9, .	11.3	65
2	Polarization-Entangled Two-Photon Absorption in Inhomogeneously Broadened Ensembles. Frontiers in Physics, 2022, $10,\ldots$	2.1	3
3	Continuously Parametrized Quantum Simulation of Molecular Electron-Transfer Reactions. PRX Quantum, 2021, 2, .	9.2	5
4	Analytical solution for the steady states of the driven Hubbard model. Physical Review B, 2021, 103, .	3.2	9
5	Evidence for metastable photo-induced superconductivity in K3C60. Nature Physics, 2021, 17, 611-618.	16.7	80
6	Detection of photon statistics and multimode field correlations by Raman processes. Journal of Chemical Physics, 2021, 154, 104116.	3.0	4
7	Optimization of selective two-photon absorption in cavity polaritons. Journal of Chemical Physics, 2021, 154, 214114.	3.0	6
8	Multidimensional four-wave mixing signals detected by quantum squeezed light. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
9	Quantum metrology of two-photon absorption. Physical Review Research, 2021, 3, .	3.6	13
10	How to optimize the absorption of two entangled photons. SciPost Physics Core, 2021, 4, .	2.8	7
11	Higgs mode stabilization by photoinduced long-range interactions in a superconductor. Physical Review B, 2021, 104, .	3.2	10
12	Direct detection of odd-frequency superconductivity via time- and angle-resolved photoelectron fluctuation spectroscopy. Physical Review Research, 2021, 3 , .	3.6	4
13	Photoinduced Electron Pairing in a Driven Cavity. Physical Review Letters, 2020, 125, 053602.	7.8	37
14	Photomolecular High-Temperature Superconductivity. Physical Review X, 2020, 10, .	8.9	59
15	Dynamical Order and Superconductivity in a Frustrated Many-Body System. Physical Review Letters, 2020, 125, 137001.	7.8	29
16	Photon Correlation Spectroscopy as a Witness for Quantum Coherence. Physical Review Letters, 2020, 124, 203601.	7.8	23
17	Multidimensional four-wave-mixing spectroscopy with squeezed light. Applied Physics Letters, 2020, 116, .	3.3	10
18	Roadmap on quantum light spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 072002.	1.5	101

#	Article	IF	CITATIONS
19	The role of quantum correlations in entangled two-photon absorption., 2020,,.		O
20	Optical control of the current-voltage relation in stacked superconductors. Physical Review B, 2019, 100, .	3.2	1
21	Mott polaritons in cavity-coupled quantum materials. New Journal of Physics, 2019, 21, 073066.	2.9	19
22	Cavity-Mediated Unconventional Pairing in Ultracold Fermionic Atoms. Physical Review Letters, 2019, 123, 133601.	7.8	27
23	Cavity-Mediated Electron-Photon Superconductivity. Physical Review Letters, 2019, 122, 133602.	7.8	149
24	Manipulating quantum materials with quantum light. Physical Review B, 2019, 99, .	3.2	46
25	Coherence turned on by incoherent light. New Journal of Physics, 2018, 20, 113040.	2.9	19
26	Entangled Two-Photon Absorption Spectroscopy. Accounts of Chemical Research, 2018, 51, 2207-2214.	15.6	88
27	Theory of coherent control with quantum light. New Journal of Physics, 2017, 19, 013009.	2.9	32
28	Terahertz field control of interlayer transport modes in cuprate superconductors. Physical Review B, 2017, 96, .	3.2	13
29	Entangled photon spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 203001.	1.5	53
30	Excited State Distributions and Fluorescence Signals. Springer Theses, 2017, , 93-142.	0.1	0
31	Pump-Probe Measurements with Entangled Photons. Springer Theses, 2017, , 143-165.	0.1	0
32	Interferometric Setups. Springer Theses, 2017, , 167-189.	0.1	0
33	Trapped Ion Spectroscopy. Springer Theses, 2017, , 205-232.	0.1	0
34	Quantum-Enhanced Nonlinear Spectroscopy. Springer Theses, 2017, , .	0.1	1
35	Nonlinear optical signals and spectroscopy with quantum light. Reviews of Modern Physics, 2016, 88, .	45.6	234
36	Pump-probe spectroscopy using quantum light with two-photon coincidence detection. Physical Review A, $2016,93,.$	2.5	33

#	Article	IF	Citations
37	Quantum Transport on Disordered and Noisy Networks: An Interplay of Structural Complexity and Uncertainty. Annual Review of Condensed Matter Physics, 2016, 7, 223-248.	14.5	30
38	Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy. Journal of Chemical Physics, 2015, 142, 212439.	3.0	5
39	Nonlinear spectroscopy of trapped ions. Physical Review A, 2014, 90, .	2.5	14
40	Matter correlations induced by coupling to quantum light. Physical Review A, 2014, 89, .	2.5	5
41	Nonlinear spectroscopy of controllable many-body quantum systems. New Journal of Physics, 2014, 16, 092001.	2.9	21
42	Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection. Journal of Physical Chemistry Letters, 2014, 5, 2843-2849.	4.6	36
43	Multidimensional spectroscopy with entangled light; A novel pulse scanning protocol. , 2014, , .		0
44	Photon statistics of intense entangled photon pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 175502.	1.5	14
45	Suppression of population transport and control of exciton distributions by entangled photons. Nature Communications, 2013, 4, 1782.	12.8	78
46	Two-photon spectroscopy of excitons with entangled photons. Journal of Chemical Physics, 2013, 139, 244110.	3.0	24
47	Nonlinear spectroscopy of chromophore aggregates with entangled photon pulses. EPJ Web of Conferences, 2013, 41, 12006.	0.3	0
48	Bunching and anti-bunching of localised particles in disordered media. Europhysics Letters, 2012, 99, 14001.	2.0	12
49	Manipulation of two-photon-induced fluorescence spectra of chromophore aggregates with entangled photons: A simulation study. Physical Review A, 2012, 86, .	2.5	34
50	Lieb's Theorem and Maximum Entropy Condensates. Quantum - the Open Journal for Quantum Science, 0, 5, 610.	0.0	6