
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463824/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-Synthetic Modification of a Metal–Organic Framework Glass. Chemistry of Materials, 2022, 34, 2187-2196.	6.7	27
2	Modulated self-assembly of an interpenetrated MIL-53 Sc metal–organic framework with excellent volumetric H2 storage and working capacity. Materials Today Chemistry, 2022, 24, 100887.	3.5	4
3	MOF nanoparticles as heterogeneous catalysts for direct amide bond formations. Dalton Transactions, 2022, 51, 8368-8376.	3.3	10
4	Controlling the Flexibility of MILâ€88A(Sc) Through Synthetic Optimisation and Postsynthetic Halogenation. Chemistry - A European Journal, 2022, 28, .	3.3	8
5	Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine. ACS Applied Nano Materials, 2022, 5, 13862-13873.	5.0	28
6	Immobilising giant unilamellar vesicles with zirconium metal–organic framework anchors. Soft Matter, 2021, 17, 2024-2027.	2.7	0
7	Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. Journal of Materials Chemistry B, 2021, 9, 3423-3449.	5.8	61
8	Photophysics of azobenzene constrained in a UiO metalâ€organic framework: effects of pressure, solvation and dynamic disorder. Chemistry - A European Journal, 2021, 27, 14871-14875.	3.3	6
9	Exploring and expanding the Fe-terephthalate metal–organic framework phase space by coordination and oxidation modulation. Materials Horizons, 2021, 8, 3377-3386.	12.2	25
10	Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring InÂVitro Drug Delivery from MOFs in Real Time. Cell Reports Physical Science, 2020, 1, 100254.	5.6	19
11	Controlled Transdermal Release of Antioxidant Ferulate by a Porous Sc(III) MOF. IScience, 2020, 23, 101156.	4.1	16
12	Design of a Functionalized Metal–Organic Framework System for Enhanced Targeted Delivery to Mitochondria. Journal of the American Chemical Society, 2020, 142, 6661-6674.	13.7	103
13	Correlating Pressureâ€Induced Emission Modulation with Linker Rotation in a Photoluminescent MOF. Angewandte Chemie - International Edition, 2020, 59, 8118-8122.	13.8	30
14	Multivariate Modulation of the Zr MOF UiOâ€66 for Defectâ€Controlled Combination Anticancer Drug Delivery. Angewandte Chemie, 2020, 132, 5249-5255.	2.0	52
15	Multivariate Modulation of the Zr MOF UiOâ€66 for Defectâ€Controlled Combination Anticancer Drug Delivery. Angewandte Chemie - International Edition, 2020, 59, 5211-5217.	13.8	205
16	Modulated self-assembly of metal–organic frameworks. Chemical Science, 2020, 11, 4546-4562.	7.4	155
17	Assessing Crystallisation Kinetics of Zr Metal–Organic Frameworks through Turbidity Measurements to Inform Rapid Microwaveâ€Assisted Synthesis. Chemistry - A European Journal, 2020, 26, 6910-6918.	3.3	21
18	Implementing fluorescent MOFs as down-converting layers in hybrid light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2394-2400.	5.5	23

#	Article	IF	CITATIONS
19	The surface chemistry of metal–organic frameworks and their applications. Dalton Transactions, 2019, 48, 9037-9042.	3.3	58
20	Kinetic Control of Interpenetration in Fe–Biphenyl-4,4′-dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation. Journal of the American Chemical Society, 2019, 141, 8346-8357.	13.7	58
21	Uncovering the Structural Diversity of Y(III) Naphthalene-2,6-Dicarboxylate MOFs Through Coordination Modulation. Frontiers in Chemistry, 2019, 7, 36.	3.6	15
22	Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 2019, 380, 230-259.	18.8	470
23	Towards the Stepwise Assembly of Molecular Borromean Rings. A Donor-Acceptor Ring-in-Ring Complex. Journal of the Mexican Chemical Society, 2019, 53, .	0.6	1
24	Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chemical Communications, 2018, 54, 2792-2795.	4.1	90
25	Simultaneous neutron powder diffraction and microwave dielectric studies of ammonia absorption in metal–organic framework systems. Physical Chemistry Chemical Physics, 2018, 20, 10460-10469.	2.8	7
26	Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 5255-5268.	8.0	84
27	Crystallographic investigation into the self-assembly, guest binding, and flexibility of urea functionalised metal-organic frameworks. Supramolecular Chemistry, 2018, 30, 732-741.	1.2	13
28	Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1181-1187.	10.3	44
29	Targetable Mechanical Properties by Switching between Selfâ€Sorting and Coâ€assembly with <i>In Situ</i> Formed Tripodal Ketoenamine Supramolecular Hydrogels. ChemNanoMat, 2018, 4, 853-859.	2.8	6
30	Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 31146-31157.	8.0	121
31	Salicylaldehyde Hydrazones: Buttressing of Outer-Sphere Hydrogen-Bonding and Copper Extraction Properties. Australian Journal of Chemistry, 2017, 70, 556.	0.9	5
32	Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. CheM, 2017, 2, 561-578.	11.7	266
33	Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. Journal of the American Chemical Society, 2017, 139, 6253-6260.	13.7	78
34	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. Faraday Discussions, 2017, 201, 87-99.	3.2	9
35	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	3.2	14
36	Tuning the Endocytosis Mechanism of Zr-Based Metal–Organic Frameworks through Linker Functionalization_ACS Applied Materials & amp: Interfaces_2017_9_35516-35525	8.0	44

#	Article	IF	CITATIONS
37	Synthetic Considerations in the Self-Assembly of Coordination Polymers of Pyridine-Functionalized Hybrid Mn-Anderson Polyoxometalates. Crystal Growth and Design, 2017, 17, 4739-4748.	3.0	32
38	Image-Guided Therapy Using Maghemite-MOF Nanovectors. CheM, 2017, 3, 200-202.	11.7	3
39	Stereoselective Halogenation of Integral Unsaturated Câ€C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs. Chemistry - A European Journal, 2016, 22, 4870-4877.	3.3	77
40	Postsynthetic Modification of Zirconium Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4310-4331.	2.0	188
41	Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization. Journal of Materials Chemistry B, 2016, 4, 7697-7707.	5.8	131
42	Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance. Dalton Transactions, 2016, 45, 4132-4135.	3.3	34
43	Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 6955-6963.	10.3	137
44	Solvent Extraction of Copper: An Extractive Metallurgy Exercise for Undergraduate Teaching Laboratories. Journal of Chemical Education, 2016, 93, 362-367.	2.3	8
45	Single-Crystal to Single-Crystal Mechanical Contraction of Metal–Organic Frameworks through Stereoselective Postsynthetic Bromination. Journal of the American Chemical Society, 2015, 137, 9527-9530.	13.7	110
46	EPR/ENDOR and Computational Study of Outer Sphere Interactions in Copper Complexes of Phenolic Oximes. Inorganic Chemistry, 2015, 54, 8465-8473.	4.0	9
47	Structure-directing factors when introducing hydrogen bond functionality to metal–organic frameworks. CrystEngComm, 2015, 17, 299-306.	2.6	33
48	The surface chemistry of metal–organic frameworks. Chemical Communications, 2015, 51, 5199-5217.	4.1	336
49	Topological isomerism in a chiral handcuff catenane. Chemical Science, 2014, 5, 90-100.	7.4	24
50	The topological and chemical implications of introducing oriented rings to [3]catenanes. Supramolecular Chemistry, 2014, 26, 192-201.	1.2	5
51	3D Printed Highâ€Throughput Hydrothermal Reactionware for Discovery, Optimization, and Scaleâ€Up. Angewandte Chemie - International Edition, 2014, 53, 12723-12728.	13.8	126
52	Exploring the Programmable Assembly of a Polyoxometalate–Organic Hybrid via Metal Ion Coordination. Journal of the American Chemical Society, 2013, 135, 13425-13432.	13.7	78
53	Chameleonic Binding of the Dimethyldiazaperopyrenium Dication by Cucurbit[8]uril. Asian Journal of Organic Chemistry, 2013, 2, 225-229.	2.7	8
54	A dual host approach to NiSO ₄ extraction. Supramolecular Chemistry, 2012, 24, 117-126.	1.2	9

#	Article	IF	CITATIONS
55	Polyporous Metal-Coordination Frameworks. Organic Letters, 2012, 14, 1460-1463.	4.6	47
56	Self-Assembly of a [2]Pseudorota[3]catenane in Water. Journal of the American Chemical Society, 2012, 134, 17007-17010.	13.7	38
57	Nanoporous Carbohydrate Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 406-417.	13.7	271
58	Stereochemistry of Molecular Figuresâ€ofâ€Eight. Chemistry - A European Journal, 2012, 18, 10312-10323.	3.3	24
59	Donor–Acceptor Ringâ€inâ€Ring Complexes. Chemistry - A European Journal, 2012, 18, 202-212.	3.3	40
60	Donor–acceptor molecular figures-of-eight. Chemical Communications, 2011, 47, 11870.	4.1	44
61	Using the Outer Coordination Sphere to Tune the Strength of Metal Extractants. Inorganic Chemistry, 2011, 50, 4515-4522.	4.0	37
62	Chemical Topology: Complex Molecular Knots, Links, and Entanglements. Chemical Reviews, 2011, 111, 5434-5464.	47.7	742
63	Mechanically Stabilized Tetrathiafulvalene Radical Dimers. Journal of the American Chemical Society, 2011, 133, 4538-4547.	13.7	114
64	Monofunctionalized Pillar[5]arene as a Host for Alkanediamines. Journal of the American Chemical Society, 2011, 133, 5668-5671.	13.7	468
65	Strong and Reversible Binding of Carbon Dioxide in a Green Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 15312-15315.	13.7	346
66	Imprinting Chemical and Responsive Micropatterns into Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 276-279.	13.8	68
67	The Dynamic Chemistry of Molecular Borromean Rings and Solomon Knots. Chemistry - A European Journal, 2010, 16, 12570-12581.	3.3	91
68	Metal–Organic Frameworks from Edible Natural Products. Angewandte Chemie - International Edition, 2010, 49, 8630-8634.	13.8	568
69	Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nature Chemistry, 2010, 2, 870-879.	13.6	171
70	Directed self-assembly of a ring-in-ring complex. Chemical Communications, 2010, 46, 5861.	4.1	51
71	Collision induced dissociation (CID) to probe the outer sphere coordination chemistry of bis-salicylaldoximate complexes. Dalton Transactions, 2010, 39, 5614.	3.3	6
72	Cation and anion selectivity of zwitterionic salicylaldoxime metal salt extractants. Dalton Transactions, 2010, 39, 1763.	3.3	30

#	Article	IF	CITATIONS
73	A New Polynuclear Coordination Type for (Salicylaldoxime)copper(II) Complexes: Structure and Magnetic Properties of an (Oxime)Cu ₆ Cluster. European Journal of Inorganic Chemistry, 2009, 2009, 4613-4617.	2.0	32
74	Anion-induced contraction of helical receptors. Chemical Communications, 2009, , 3606.	4.1	17
75	3-Fluorosalicylaldoxime at 6.5 GPa. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2001-o2001.	0.2	2
76	The effect of pressure and substituents on the size of pseudo-macrocyclic cavities in salicylaldoxime ligands. CrystEngComm, 2008, 10, 239-251.	2.6	15
77	Transport of metal salts by zwitterionic ligands; simple but highly efficient salicylaldoxime extractants. Chemical Communications, 2008, , 4049.	4.1	24
78	COPPER EXTRACTANT STRENGTH: THE EFFECT OF SUBSTITUENTS IN THE 3-POSITION ON HYDROXYOXIME PERFORMANCE. Canadian Metallurgical Quarterly, 2008, 47, 293-300.	1.2	0
79	Supramolecular chemistry in metal recovery; H-bond buttressing to tune extractant strength. Chemical Communications, 2007, , 4940.	4.1	17
80	3-Fluorosalicylaldoxime. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3132-o3132.	0.2	1
81	3-Hydroxysalicylaldoxime. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3131-o3131.	0.2	1
82	3-(5-tert-Butyl-2-hydroxybenzoyl)propanoic acid. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3249-o3249.	0.2	0
83	Effect of pressure on the crystal structure of salicylaldoxime-I, and the structure of salicylaldoxime-II at 5.93â€GPa. Acta Crystallographica Section B: Structural Science, 2006, 62, 1099-1111.	1.8	44
84	Salicylaldoxime-III at 150 K. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3944-o3946.	0.2	3