Alfredo M Castaneda Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463067/publications.pdf

Version: 2024-02-01

269 papers 15,158 citations

20817 60 h-index 23533 111 g-index

274 all docs

274 docs citations

times ranked

274

8675 citing authors

#	Article	IF	CITATIONS
1	Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $$$ sqrt{s} $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
2	Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
3	Search for long-lived particles decaying to leptons with large impact parameter in protonae \mathbb{C} proton collisions at $\$$ sqrt $\{s\} = 13$, ext $\{Te\}$ ext $\{V\}$ $\$$ European Physical Journal C, 2022, 82, 153.	3.9	14
4	Study of dijet events with large rapidity separation in proton-proton collisions at $\$\$$ sqrt $\{s\}$ $\$\$$ = 2.76 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	1
5	Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2022, 82, 290.	3.9	18
6	Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	13
7	Search for long-lived particles decaying into muon pairs in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV collected with a dedicated high-rate data stream. Journal of High Energy Physics, 2022, 2022, .	4.7	5
8	Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $\$$ sqrt{s} $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	12
9	Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $$$ sqrt{s} $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
10	Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
11	Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
12	Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
13	Measurement of the inclusive $\$ mathrm{t}-overline{mathrm{t}} \$\$ production cross section in proton-proton collisions at \$\$ sqrt{s} \$\$ = 5.02 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
14	Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $\$\$ $ sqrt $\$\$ $ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	2
15	Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	4
16	Observation of B\$\$^0\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm $\{S\}$ uppi ^+uppi ^-\$\$ and B\$\$^0_mathrm $\{s\}$ \$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm $\{S\}$ \$\$ decays. European Physical Journal C, 2022, 82, .	3.9	1
17	Search for dark matter produced in association with a leptonically decaying \$\${mathrm{Z}} \$\$ boson in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 13.	3.9	33
18	Search for top squark pair production using dilepton final states in $\{ext \{p\}\}\$ collision data collected at $\{s\}=13$, ext $\{ev\}\$. European Physical Journal C, 2021, 81, 3.	3.9	33

#	Article	IF	CITATIONS
19	Measurements of $f^{p}} {\mathbf{p}} {\mathbf{p}$	3.9	24
20	Development and validation of HERWIGÂ7 tunes from CMS underlying-event measurements. European Physical Journal C, 2021, 81, 312.	3.9	12
21	Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\$$ sqrt $\{s\} = 13$,ext $\{Te\}$ ext $\{V\}$ $\$$. European Physical Journal C, 2021, 81, 378.	3.9	40
22	Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 488.	3.9	35
23	Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	27
24	MUSiC: a model-unspecific search for new physics in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 629.	3.9	18
25	Search for a heavy vector resonance decaying to a $\frac{2}{mathrm{2}}_{mathrm{}}^{mathrm{}}\$ Aboson and a Higgs boson in proton-proton collisions at $\frac{5}{mathrm{2}} = 13$, ext $Te = 10$, s. European Physical Journal C, 2021, 81, 688.	3.9	9
26	Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in protonâ \in "proton collisions at $\frac{1}{5} = 13$, {ext TeV } \$\$. European Physical Journal C, 2021, 81, 723.	3.9	19
27	Measurements of angular distance and momentum ratio distributions in three-jet and $\{Z\}$ + two-jet final states in $\{p\}$ ext $\{p\}$ collisions. European Physical Journal C, 2021, 81, 852.	3.9	2
28	Precision luminosity measurement in proton–proton collisions at \$\$sqrt{s} = 13,hbox {TeV}\$\$ in 2015 and 2016 at CMS. European Physical Journal C, 2021, 81, 800.	3.9	123
29	Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 970.	3.9	18
30	A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. Computing and Software for Big Science, 2020, 4, 10.	2.9	21
31	Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at \hat{a} ' \hat{s} < \hat{i} > = 13 TeV. Journal of Instrumentation, 2020, 15, P02027-P02027.	1.2	27
32	Performance of the CMS Level-1 trigger in proton-proton collisions at $\hat{a} \cdot \hat{s} \cdot \hat{s} \cdot \hat{s} = 13$ TeV. Journal of Instrumentation, 2020, 15, P10017-P10017.	1.2	84
33	Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment. Journal of High Energy Physics, 2020, 2020, 1.	4.7	21
34	Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	20
35	Search for direct pair production of supersymmetric partners to the \$\${uptau }_{}^{}\$\$ lepton in protonâ€"proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2020, 80, 189.	3.9	22
36	Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in $\$ mathrm {PbPb}\$\$ collisions at \$\$sqrt{smash [b]{s_{_{mathrm {NN}}}}} = 2.76\$\$ and 5.02\$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 534.	3.9	14

#	Article	IF	CITATIONS
37	Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 75.	3.9	78
38	Searches for physics beyond the standard model with the $M_{mathrm {T2}}$ variable in hadronic final states with and without disappearing tracks in protonâe proton collisions at $s=13,ext {Te}ext {V}$. European Physical Journal C, 2020, 80, 3.	3.9	70
39	Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements. European Physical Journal C, 2020, 80, 4.	3.9	198
40	Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	14
41	A multi-dimensional search for new heavy resonances decaying to boosted $\$ w \{\}{\}\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\	3.9	31
42	Measurement of single-diffractive dijet production in proton–proton collisions at \$\$sqrt{s} = 8,ext {Te}ext {V} \$\$ with the CMS and TOTEM experiments. European Physical Journal C, 2020, 80, 1164.	3.9	5
43	Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2020, 80, 370.	3.9	22
44	Measurement of $\frac{t}{ar{hbox \{t}}}$ normalised multi-differential cross sections in $\frac{p}{ext \{p\}}$ ss collisions at $\frac{1}{s}=13$, ext \frac{TeV} ss, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions. European Physical Journal C, 2020, 80, 1.	3.9	33
45	Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	17
46	Search for the pair production of light top squarks in the $e\hat{A}\pm\hat{1}/4\hat{a}^{**}$ final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
47	Measurements of the pp \hat{a} 'WZ inclusive and differential production cross sections and constraints on charged anomalous triple gauge couplings at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	14
48	Measurement of the $f(t) = \frac{1}{2} $ Measurement of $f(t) = \frac{1}{2} $ Measurement	3.9	68
49	Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in protonâ \in "proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 280.	3.9	29
50	Study of the underlying event in top quark pair production in \$\$mathrm {p}mathrm {p}\$\$ p p collisions at 13 \$\$~ext {Te}ext {V}\$\$ Te. European Physical Journal C, 2019, 79, 123.	3.9	11
51	Search for \$\$ mathrm{t}overline{mathrm{t}}mathrm{H} \$\$ production in the \$\$ mathrm{H}o mathrm{b}overline{mathrm{b}} \$\$ decay channel with leptonic \$\$ mathrm{t}overline{mathrm{t}} \$\$ decays in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019. 1.	4.7	28
52	Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	12
53	Measurement of the differential Drell-Yan cross section in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	18
54	Measurements of differential Z boson production cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28

#	Article	IF	CITATIONS
55	Pseudorapidity distributions of charged hadrons in proton-lead collisions at s N N = $5.02 $ \$ sqrt{s_{mathrm{NN}}}= $5.02 $ \$ and $8.16 $ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	8
56	Search for resonant and nonresonant Higgs boson pair production in the b b $\hat{A}^ \hat{a}$, " $\hat{1}$ / $2\hat{a}$,"" $\hat{1}$ / $2\hat{a}$," " $\hat{1}$ / 2	4.7	36
57	Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in protonâ \in "proton collisions at \$\$sqrt{s} \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 291.	3.9	27
58	Measurements of the $\mbox{mathrm } \{p\}$ mathrm $\{p\}$ ightarrow mathrm $\{Z\}$ mathrm $\{Z\}$ p p → Z Z production cross section and the $\mbox{mathrm} \{Z\}$ ightarrow 4ell $\mbox{substante} Z$ → 4 â," branching fraction, and constraints on anomalous triple gauge couplings at. European Physical Journal C, 2018, 78, 165.	3.9	52
59	Measurement of associated Z + charm production in protonâ \in proton collisions at \$\$\$qrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 287.	3.9	16
60	Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	63
61	Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
62	Search for $\$$ mathrm{t}overline{mathrm{t}}mathrm{H} $\$$ production in the all-jet final state in proton-proton collisions at $\$$ sqrt{s}=13 $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
63	Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	11
64	Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
65	Measurement of the top quark mass with lepton+jets final states using $\$$ mathrm {p} $\$$ \$mathrm {p} $\$$ \$mathrm {p} $\$$ \$ collisions at $\$$ \$sqrt $\$$ 13,ext {TeV} $\$$ 5. European Physical Journal C, 2018, 78, 891.	3.9	34
66	Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	57
67	Search for $Z\hat{I}^3$ resonances using leptonic and hadronic final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
68	Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at $s=13 $ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	14
69	Search for third-generation scalar leptoquarks decaying to a top quark and a $\$$ au $\$$ i, lepton at $\$$ sqrt $\$$ 1, lepton at $\$$ 2, lepton at $\$$ 3, represent the search formula of	3.9	46
70	Measurement of differential cross sections for $\{Z\}$ Z boson production in association with jets in proton-proton collisions at $\{Z\}$ Z	3.9	39
71	Search for a heavy resonance decaying into a Z boson and a Z or W boson in $2\hat{a}$, "2q final states at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	8
72	Measurement of charged particle spectra in minimum-bias events from proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 697.	3.9	17

#	Article	IF	Citations
73	Search for new physics in dijet angular distributions using proton–proton collisions at \$\$\$qrt{s}=13hbox {TeV}\$\$ and constraints on dark matter and other models. European Physical Journal C, 2018, 78, 789.	3.9	40
74	Search for high-mass resonances in final states with a lepton and missing transverse momentum at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	25
75	Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	13
76	Measurement of the \$\$mathrm {Z}/gamma ^{*} ightarrow au au \$\$ Z / \hat{l}^3 \hat{a} — \hat{a} †' \ddot{l} , \ddot{l} , cross section in pp collisions at \$\$sqrt{s} = 13 hbox { TeV}\$\$ s = 13 TeV and validation of \$\$. European Physical Journal C, 2018, 78, 708.	3.9	10
77	Search for dark matter produced in association with a Higgs boson decaying to $\hat{l}^3\hat{l}^3$ or \hat{l}_3 + \hat{l}_3 and \hat{l}_3 at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
78	Search for a heavy resonance decaying into a Z boson and a vector boson in the $\$ u overline{u}mathrm{q}overline{mathrm{q}} \$\$ final state. Journal of High Energy Physics, 2018, 2018, 1.	4.7	10
79	Measurement of the weak mixing angle using the forward–backward asymmetry of Drell–Yan events in \$\$mathrm {p}mathrm {p}\$\$ p p collisions at 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 701.	3.9	58
80	Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying \ddot{l} , leptons at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	38
81	Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
82	Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	13
83	Measurement of the inelastic proton-proton cross section at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	62
84	Search for high-mass resonances in dilepton final states in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	86
85	Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $s=13 $ \$ sqrt $\{s\}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	42
86	Search for standard model production of four top quarks with same-sign and multilepton final states in protonâ \in "proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 140.	3.9	44
87	Measurements of the (mathrm {p}mathrm {p}ightarrow mathrm{Z}mathrm{Z}) production cross section and the (mathrm{Z}ightarrow 4ell) branching fraction, and constraints on anomalous triple gauge couplings at (sqrt{s} = 13,ext {TeV})., 2018, 78, 1.		3
88	Measurements of the $\mbox{mathrm{t}}$ overline{mathrm{t}}\$\$ t t $\mbox{$\hat{A}$}^-$ production cross section in lepton+jets final states in pp collisions at 8 \$\$,ext {TeV}\$\$ TeV and ratio of 8 to 7 $\mbox{$\hat{A}$}$ \$\$,ext {TeV}\$\$ TeV cross sections. European Physical Journal C, 2017, 77, 15.	3.9	34
89	display="inline"> <mml:msup><mml:mi>B</mml:mi><mml:mi><mml:mo>±</mml:mo></mml:mi></mml:msup> Meson Nuclear Modification Factor in Pb-Pb Collisions at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msort><mml:mrow><mml:msub><mml:mrow><mml:mi>s<td>7.8</td><td>62</td></mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msort></mml:mrow></mml:math>	7.8	62
90	Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mrow><mml:msqrt><mp>Physical Review Letters, 2017, 119, 111802.</mp></mml:msqrt></mml:mrow></mml:msqrt></mml:mrow></mml:math>	- 0	a-

#	Article	IF	CITATIONS
91	Search for t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
92	Observation of Top Quark Production in Proton-Nucleus Collisions. Physical Review Letters, 2017, 119, 242001.	7.8	23
93	Search for new phenomena with the \$\$M_{mathrm {T2}}\$\$ M T 2 variable in the all-hadronic final state produced in proton–proton collisions at \$\$\$qrt{s} = 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 710.	3.9	98
94	Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at $s = 8 $ \$ sqrt $\{s\}=8 $ \$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
95	Searches for W′ bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	8
96	Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $s = 13 $ \$ sqrt $\{s\}=13 $ \$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
97	Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
98	Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at $\$$ sqrt{s}=13 $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	27
99	Search for top squark pair production in pp collisions at $s = 13 $ \$ sqrt $\{s\}=13 $ \$ TeV using single lepton events. Journal of High Energy Physics, 2017, 2017, 1.	4.7	31
100	Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
101	Search for top quark partners with charge $5/3$ in proton-proton collisions at $s = 13 $ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	3
102	Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\$$ sqrt $\{s\} = 13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 636.	3.9	38
103	Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
104	Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $s=13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
105	Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	101
106	Measurements of the associated production of a Z boson and b jets in pp collisions at $\$\{qrt\{s\}\} = 8$, ext $TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 751.	3.9	30
107	Measurement of the double-differential inclusive jet cross section in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 451.	3.9	55
108	Measurement of the $f(w) ^{+} \$ mathrm $f(w)^{-} \$ W + W - cross section in pp collisions at $f(s) = 8$ s = 8 TeVand limits on anomalous gauge couplings. European Physical Journal C, 2016, 76, 401.	3.9	74

#	Article	IF	Citations
109	Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks. European Physical Journal C, 2016, 76, 371.	3.9	33
110	Reconstruction and identification of \ddot{l} , lepton decays to hadrons and $\hat{l}^{1/2}$ (sub) \ddot{l} , (sub) at CMS. Journal of Instrumentation, 2016, 11, P01019-P01019.	1.2	85
111	Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17
112	Search for lepton flavour violating decays of heavy resonances and quantum black holes to an \$\$mathrm {e}mu \$\$ e μ pair in proton–proton collisions at \$\$sqrt{s}=8~ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 317.	3.9	16
113	Measurement of electroweak production of a W boson and two forward jets in proton-proton collisions at $s = 8 $ sqrt $s = 8 $ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
114	Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at s N N = 2.76 \$\$ sqrt{s_{mathrm{NN}}}= 2.76 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	31
115	Search for anomalous single top quark production in association with a photon in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	27
116	Search for direct pair production of scalar top quarks in the single- and dilepton channels in proton-proton collisions at $s=8$ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	7
117	Search for the associated production of a Higgs boson with a single top quark in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	13
118	Forwardâ€"backward asymmetry of Drellâ€"Yan lepton pairs in pp collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$, mathrm{TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 325.	3.9	25
119	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi></mml:mi> Collisions at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msqrt><mml:mi></mml:mi></mml:msqrt><mml:mi>s<mml:mo>=</mml:mo><mml:mn>13<td>7.8 n><mml:n< td=""><td>139 ntext> ≪</td></mml:n<></td></mml:mn></mml:mi></mml:math>	7.8 n> <mml:n< td=""><td>139 ntext> ≪</td></mml:n<>	139 ntext> ≪
120	Physical Review Letters, 2016, 116, 172302. Measurement of dijet azimuthal decorrelation in ppÂcollisions at $\$$ sqrt $\{s\}$ =8,mathrm $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 536.	3.9	16
121	Search for dark matter particles in proton-proton collisions at $s = 8 $ \$\$ sqrt s =8 \$\$ TeV using the razor variables. Journal of High Energy Physics, 2016, 2016, 1.	4.7	4
122	Search for s channel single top quark production in pp collisions at $s = 7 $ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	14
123	Measurement of inclusive jet production and nuclear modifications in pPb collisions at $s=\{mathrm \{NN\}\}\} = 5.02$, mathrm $t=\{TeV\}$ \$\$ s NN. European Physical Journal C, 2016, 76, 372.	3.9	29
124	Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
125	Measurement of the t t \hat{A}^- \$\$ mathrm{t}} overline{mathrm{t}} \$\$ production cross section in the elluy channel in proton-proton collisions at s = 7 \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	41
126	Search for new physics with the M T2 variable in all-jets final states produced in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17

#	Article	IF	CITATIONS
127	Evidence for exclusive $\hat{I}^3\hat{I}^3$ \hat{a}^* $W + W$ \hat{a}^* production and constraints on anomalous quartic gauge couplings in pp collisions at s = 7 \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	42
128	Search for direct pair production of supersymmetric top quarks decaying to all-hadronic final states in pp collisions at $\$$ qrt $\{s\} = 8$; ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 460.	3.9	18
129	Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	20
130	Phenomenological MSSM interpretation of CMS searches in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	12
131	Measurement of the inclusive jet cross section in pp collisions at $\$$ sqrt $\{s\} = 2.76$,ext $\{TeV\}$ \$\$ s = 2.76 TeV. European Physical Journal C, 2016, 76, 1.	3.9	26
132	Measurement of $\mbox{mathrm {t}-verline{mathrm {t}}}$ t t $\mbox{$\hat{A}^-$}$ production with additional jet activity, including \$\$mathrm {b}\$\$ b quark jets, in the dilepton decay channel using pp collisions at \$\$sqrt{s} = 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 379.	3.9	34
133	Measurement of the differential cross section and charge asymmetry for inclusive $\mbox{smathrm } \{p\}$ mathrm $\{p\}$ mathrm $\{p\}$ mathrm $\{m\}^{p}$ p $\{p\}$ p $\{p\}$ w $\{p\}$ p $\{p\}$ p $\{p\}$ p $\{p\}$ p $\{p\}$ p $\{p\}$ mathrm $\{p\}$ s = 8 s = 8 TeV. European Physical Journal C, 2016, 76, 469.	3.9	83
134	Observation of top quark pairs produced in association with a vector boson in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	23
135	Search for $W\hat{a}\in \hat{a}$ \hat{a} th in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	3
136	Correlations between jets and charged particles in PbPb and pp collisions at s N N = $2.76 \$$ sqrt{s_{mathrm{NN}}}= $2.76 \$$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	29
137	Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at $s = 8 $ \$ sqrt $s=8 $ \$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
138	Search for excited leptons in proton-proton collisions at s = $8 $ \$\$ sqrt{s}= $8 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16
139	Measurement of the $\frac{t}{v}$ mathrm{t}overline{{mathrm{t}}}\$ t t \hat{A}^- production cross section in the all-jets final state in pp collisions at $\frac{s}{s} = 8$ s, ext {TeV}\$ TeV. European Physical Journal C, 2016, 76, 128.	3.9	41
140	Event generator tunes obtained from underlying event and multiparton scattering measurements. European Physical Journal C, 2016, 76, 155.	3.9	499
141	Search for massive WH resonances decaying into the \$\$ell u mathrm{b} overline{mathrm{b}} \$\$ â," $\hat{l}/2$ b b \hat{A}^- final state at \$\$sqrt{s}=8\$\$ s = 8 \$\$~ext {TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 237.	3.9	30
142	Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at $s = 8 $ \$ sqrt $\{s\}=8 $ \$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16
143	Measurement of top quark polarisation in t-channel single top quark production. Journal of High Energy Physics, 2016, 2016, 1.	4.7	15
144	Search for heavy Majorana neutrinos in $e\hat{A}\pm e\hat{A}\pm + jets$ and $e\hat{A}\pm \hat{1}\sqrt{4}$ $\hat{A}\pm + jets$ events in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	35

#	Article	IF	Citations
145	Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into \ddot{l} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
146	Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\$$ sqrt $\{s\}=8$,ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 13.	3.9	62
147	Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at â^š <i>s</i> = 8 TeV. Journal of Instrumentation, 2015, 10, P08010-P08010.	1.2	168
148	Performance of the CMS missing transverse momentum reconstruction in pp data at $\hat{a}\hat{s}\langle i\rangle s\langle i\rangle = 8$ TeV. Journal of Instrumentation, 2015, 10, P02006-P02006.	1.2	93
149	Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at s \$ sqrt{s} \$\$ = 8 TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
150	Search for third-generation scalar leptoquarks in the ti,, channel in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
151	Searches for supersymmetry using the M T2 variable in hadronic events produced in pp collisions at 8 TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	34
152	Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	37
153	Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	20
154	Search for a charged Higgs boson in pp collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	81
155	Search for supersymmetry in the vector-boson fusion topology in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	12
156	Search for a light charged Higgs boson decaying to c s \hat{A}^- \$\$ mathrm{c}overline{mathrm{s}} \$\$ in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1-37.	4.7	44
157	Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
158	Search for neutral color-octet weak-triplet scalar particles in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	1
159	Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons. Journal of High Energy Physics, 2015, 2015, 1.	4.7	92
160	Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 212.	3.9	541
161	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msort><mml:mi>s</mml:mi></mml:msort><mml:mo>=</mml:mo><mml:mo><td>7.8 1><td>1,062 nath>and</td></td></mml:mo></mml:math 	7.8 1> <td>1,062 nath>and</td>	1,062 nath>and
162	8ÅTeV with the ATLAS and CMS Experiments. Physical Review Letters, 2015, 114, 191803. Measurement of the Zγ production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings. Journal of High Energy Physics, 2015, 2015, 1.	4.7	11

#	Article	lF	CITATIONS
163	Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeVÂand determination of the strong coupling constant in the TeVÂrange. European Physical Journal C, 2015, 75, 186.	3.9	68
164	Measurement of the differential cross section for top quark pair production in pp collisions at $s=8$, ext TeV $s=8$ reV. European Physical Journal C, 2015, 75, 542.	3.9	191
165	Measurements of the \frac{Z} $2 $ $2 $ mathrm Z $2 $ production cross sections in the $2 $ mathrm $1 $ 2u $2 $ 2 l 2 $2 $ 2 channel in protonâ $2 $ proton collisions at $2 $ and $2 $ and $2 $ and $2 $ European Physical Journal C, 2015, 75, 511.	3.9	32
166	Comparison of the $Z \hat{i}^3 = -+$ jets to $\hat{i}^3 +$ jets cross sections in pp collisions at $s = 8 $ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	6
167	Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks. Journal of High Energy Physics, 2015, 2015, 1.	4.7	30
168	Search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks using a matrix element method. European Physical Journal C, 2015, 75, 251.	3.9	73
169	Measurements of differential and double-differential Drellâ€"Yan cross sections in protonâ€"proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 147.	3.9	88
170	Search for decays of stopped long-lived particles produced in proton–proton collisions at \$\$sqrt{s}= 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 151.	3.9	44
171	Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1. Measurement of the ratio of the production cross sections times branching fractions of B c ±  â†' Jʃi`ï€	4.7 ∈ Â+	26
172	and B± â†' J/l̈́ ± and â,,¬ B c ± â†' J / l̈́ Te ± Te ± Te â. A± â†' J / Ï Te ± \$\$ mathrm{mathcal{B}}left({mathrm{B}}_{mathrm{c}}^{pm}o mathrm{J}/psi {pi}^{pm} }{pi}^{pm} Tj ETQq0 0 0		lock 10 Tf 50
173	2015, 1. Search for disappearing tracks in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	46
174	Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	78
175	Observation of the rare Bs0 â†'Âμ+Âμâ^' decay from the combined analysis of CMS and LHCb data. Nature, 2015, 522, 68-72.	27.8	390
176	Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at $s=2.76$ \$\$ sqrt{s}=2.76 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	10
177	Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\$$ sqrt $\{s\} = 7$ \$\$ s = 7 \$\$,ext $\{TeV\}$ \$\$ TeV. European Physical Journal C, 2015, 75, 288.	3.9	54
178	Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at $\frac{s_{y}}{TeV}$ TeV. European Physical Journal C, 2015, 75, 237.	3.9	58
179	Distributions of topological observables in inclusive three- and four-jet events in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ s s = 7 $\$$ s,ext $\{TeV\}$ \$\$ TeV. European Physical Journal C, 2015, 75, 302.	3.9	6
180	Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in protonâ \in proton collisions at \$\$sqrt{s} =8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 325.	3.9	43

#	ARTICLE:ment of Prompt <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>(*/mml:mi> cmml:mo</mml:mi></mml:mrow></mml:math>	IF	CITATIONS
181	stretchy="false">(<mml:mi>2</mml:mi> S <mml:mi><mml:mi> (mml:mi)</mml:mi> (mml:mi)</mml:mi> (mml:mi) <td>/Overlock 7.8</td> <td>10 Tf 50 74 47</td>	/Overlock 7.8	10 Tf 50 74 47
182	Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions. Journal of High Energy Physics, 2014, 2014, 1.	4.7	81
183	Search for standard model production of four top quarks in the lepton $+$ jets channel in pp collisions at $s = 8 $ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	17
184	Identification techniques for highly boosted W bosons that decay into hadrons. Journal of High Energy Physics, 2014, 2014, 1.	4.7	43
185	The differential production cross section of the \$\$phi \$\$ i • (1020) meson in \$\$sqrt{s}\$\$ s = 7 \hat{A} TeV \$\$pp\$\$ p p collisions measured with the ATLAS detector. European Physical Journal C, 2014, 74, 2895.	3.9	13
186	Search for third generation scalar leptoquarks in pp collisions at $q=7 $ TeV with the ATLAS detector. Journal of High Energy Physics, 2013, 2013, 1.	4.7	32
187	Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. Journal of High Energy Physics, 2013, 2013, 1.	4.7	137
188	Measurement of ZZ production in pp collisions at $q=7 $ TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector. Journal of High Energy Physics, 2013, 2013, 1.	4.7	61
189	Search for charged Higgs bosons through the violation of lepton universality in $\$ toverline $\{t\}$ \$ events using pp collision data at $\$ sqrt $\{s\}=7$ \$ TeV with the ATLAS experiment. Journal of High Energy Physics, 2013, 2013, 1.	4.7	19
190	Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $q=1$ at $q=1$ at $q=1$ at $q=1$ and $q=1$ are search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $q=1$ and $q=1$ are search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $q=1$ and $q=1$ are search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $q=1$ and $q=1$ are search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $q=1$ and $q=1$ are search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $q=1$ and $q=1$ are search for $q=1$ and	4.7	52
191	Search for a light charged Higgs boson in the decay channel H^{+} ightarrow car{s}\$ in $t=0$ with the ATLAS detector. European Physical Journal C, 2013, 73, 2465.	3.9	119
192	Improved luminosity determination in pp collisions at $q = 7 \text{ mathrm{TeV}}$ using the ATLAS detector at the LHC. European Physical Journal C, 2013, 73, 2518.	3.9	362
193	Measurement of the inclusive jet cross-section in pp collisions at $sqrt{s}=2.76$ mbox{TeV} and comparison to the inclusive jet cross-section at $qrt{s}=7$ mbox{TeV} using the ATLAS detector. European Physical Journal C, 2013, 73, 2509.	3.9	105
194	Multi-channel search for squarks and gluinos in $\frac{sqrt}{s}=7mbox{TeV}$ pp collisions with the ATLAS detector at the LHC. European Physical Journal C, 2013, 73, 2362.	3.9	34
195			

#	Article	IF	CITATIONS
199	Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at $\frac{5-7}{1000}$ with the ATLAS detector. Journal of High Energy Physics, 2013, 2013, 1.	4.7	15
200	Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at $q=0.000$ sqrt(s) = 7 mbox(TeV)\$. European Physical Journal C, 2013, 73, 1.	3.9	61
201	Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton $\hat{a} \in \text{``proton collisions at $sqrt{s} = 7 mbox{TeV}$. European Physical Journal C, 2013, 73, 1.}$	3.9	45
202	Measurement of the flavour composition of dijet events in pp collisions at $q=7 \text{ mbox} TeV$ with the ATLAS detector. European Physical Journal C, 2013, 73, 1.	3.9	15
203	Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC. European Physical Journal C, 2013, 73, 1.	3.9	45
204	Jet energy resolution in proton-proton collisions at \$sqrt{mathrm{s}}=7mbox{ TeV}\$ recorded in 2010 with the ATLAS detector. European Physical Journal C, 2013, 73, 2306.	3.9	209
205	Measurement of the $t={t}\$ production cross section in the tau + jets channel using the ATLAS detector. European Physical Journal C, 2013, 73, 2328.	3.9	45
206	Search for Gluinos in Events with Two Same-Sign Leptons, Jets, and Missing Transverse Momentum with the ATLAS Detector inppCollisions ats=7  TeV. Physical Review Letters, 2012, 108, 241802.	7.8	37
207	Measurement of the cross section for top-quark pair production in pp collisions at $q = 7$, ext TeV with the ATLAS detector using final states with two high-p T leptons. Journal of High Energy Physics, 2012, 2012, 1.	4.7	45
208	Jet mass and substructure of inclusive jets in $\$ sqrt $\{s\} = 7$; $\{ext\{TeV\}\}\$ pp collisions with the ATLAS experiment. Journal of High Energy Physics, 2012, 2012, 1.	4.7	88
209	Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC. Journal of High Energy Physics, 2012, 2012, 1.	4.7	12
210	Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb \hat{a} °1 of \$ sqrt {s} = 7;TeV \$ proton-proton collisions. Journal of High Energy Physics, 2012, 2012, 1.	4.7	53
211	A search for $\$$ toverline t $\$$ resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ TeV with the ATLAS detector. Journal of High Energy Physics, 2012, 2012, 1.	4.7	40
212	Search for the Standard Model Higgs boson in the H â†' Ï,, + Ï,, â^' decay mode in \$ sqrt {s} = 7,{mathrm{ \$ pp collisions with ATLAS. Journal of High Energy Physics, 2012, 2012, 1.	TeV}}	43
213	A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at $\$ sqrt{s}=7;TeV $\$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	34
214	Measurements of the pseudorapidity dependence of the total transverse energy in proton-proton collisions at $q=0.01$ TeV with ATLAS. Journal of High Energy Physics, 2012, 2012, 1.	4.7	15
215	Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC. Journal of High Energy Physics, 2012, 2012, 1.	4.7	54
216	Search for high-mass resonances decaying to dilepton final states in pp collisions at $q=7$ TeV with the ATLAS detector. Journal of High Energy Physics, 2012, 2012, 1.	4.7	54

#	Article	IF	CITATIONS
217	Search for anomalous production of prompt like-sign lepton pairs at $q=7;mathrm{TeV} \$ with the ATLAS detector. Journal of High Energy Physics, 2012, 2012, 1.	4.7	17
218	Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \$ sqrt{s}=7;mathrm{TeV} \$ pp collisions at the LHC. Journal of High Energy Physics, 2012, 2012, 1.	4.7	48
219	Search for R-parity-violating supersymmetry in events with four or more leptons in \$ sqrt{s}=7;mathrm{TeV} \$ pp collisions with the ATLAS detector. Journal of High Energy Physics, 2012, 2012, 1.	4.7	13
220	Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data. European Physical Journal C, 2012, 72, 1.	3.9	248
221	Rapidity gap cross sections measured with the ATLAS detector in pp collisions at $q=7$ mbox $=7$ mbox $=7$. European Physical Journal C, 2012, 72, 1.	3.9	100
222	Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at $\frac{sqrt}{s} = 7-mathrm{TeV}$. European Physical Journal C, 2012, 72, 1.	3.9	13
223	Measurement of f^{tar} production with a veto on additional central jet activity in pp collisions at f^{tar} TeV using the ATLAS detector. European Physical Journal C, 2012, 72, 2043.	3.9	109
224	A search for $\frac{t}{s} = 7$ —mathrm TeV \$. European Physical Journal C, 2012, 72, 2083.	3.9	25
225	Search for second generation scalar leptoquarks in pp collisions at \$sqrt{s}=7~mbox{TeV}\$ with the ATLAS detector. European Physical Journal C, 2012, 72, 1.	3.9	37
226	Search for a fermiophobic Higgs boson in the diphoton decay channel with the ATLAS detector. European Physical Journal C, 2012, 72, 1.	3.9	16
227	Measurement of W $\hat{A}\pm Z$ production in proton-proton collisions at $q=7-mbox\{TeV\}$ with the ATLAS detector. European Physical Journal C, 2012, 72, 1.	3.9	59
228	Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b-jets with the ATLAS detector. European Physical Journal C, 2012, 72, 1.	3.9	25
229	Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at \$sqrt{mathbf{s}}=7 mathrm{TeV}\$. European Physical Journal C, 2012, 72, 1.	3.9	22
230	Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 7 TeV proton-proton collision data with the ATLAS detector. European Physical Journal C, 2012, 72, 1.	3.9	13
231	Search for light scalar top-quark pair production in final states with two leptons with the ATLAS detector in \$sqrt{s}=7 mathrm{TeV}\$ proton–proton collisions. European Physical Journal C, 2012, 72, 1.	3.9	31
232	ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at $\frac{1}{5} = 7 \text{ mathrm}$ European Physical Journal C, 2012, 72, 1.	3.9	36
233			

#	Article	IF	CITATIONS
235	Performance of the ATLAS Trigger System in 2010. European Physical Journal C, 2012, 72, 1.	3.9	259
236	Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at	4.7	36
237	Search for charged Higgs bosons decaying via H ± â†' ï"ν in \$ toverline t \$ events using pp collision d sqrt {s} = 7;TeV \$ with the ATLAS detector. Journal of High Energy Physics, 2012, 2012, 1.	ata at \$ 4.7	126
238	Measurement of the W boson polarization in top quark decays with the ATLAS detector. Journal of High Energy Physics, 2012, 2012, 1.	4.7	57
239	Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector. Journal of High Energy Physics, 2012, 2012, 1.	4.7	29
240	Search for decays of stopped, long-lived particles from 7 TeV pp collisions with the ATLAS detector. European Physical Journal C, 2012, 72, 1.	3.9	15
241	Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at $\sqrt{s} = 7 \text{ mbox} $ with the ATLAS experiment. European Physical Journal C, 2012, 72, 1.	3.9	36
242			

#	Article	IF	Citations
253	Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \$sqrt{s}=7~mbox{TeV}\$ proton–proton collisions with the ATLAS experiment. European Physical Journal C, 2011, 71, 1.	3.9	41
254	Limits on the production of the standard model Higgs boson in pp collisions at $q=7$ TeV with the ATLAS detector. European Physical Journal C, 2011, 71, 1.	3.9	40
255	Search for diphoton events with large missing transverse energy with 36 pbâ^1 of 7 TeV proton–proton collision data with the ATLAS detector. European Physical Journal C, 2011, 71, 1.	3.9	15
256	Measurement of multi-jet cross sections in proton–proton collisions at a 7 TeV center-of-mass energy. European Physical Journal C, 2011, 71, 1.	3.9	60
257	Measurement of the jet fragmentation function and transverse profile in proton–proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector. European Physical Journal C, 2011, 71, 1.	3.9	56
258	Search for a heavy neutral particle decaying into an electron and a muon using 1 fbâ^1 of ATLAS data. European Physical Journal C, 2011, 71, 1.	3.9	14
259	Search for massive colored scalars in four-jet final states in \$sqrt{s}=7~mbox{TeV}\$ proton–proton collisions with the ATLAS detector. European Physical Journal C, 2011, 71, 1.	3.9	39
260	Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at $q=0.00000000000000000000000000000000000$	3.9	73
261	Measurement of \hat{W}^3 and \hat{Z}^3 production in proton-proton collisions at \$ sqrt {s} = 7 \$ TeV with the ATLAS detector. Journal of High Energy Physics, 2011, 2011, 1.	4.7	11
262	Inclusive search for same-sign dilepton signatures in pp collisions at $\$ sqrt $\{s\} = 7 \$ TeV with the ATLAS detector. Journal of High Energy Physics, 2011, 2011, 1.	4.7	33
263	Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $q = 7 \text{ TeV}$ pp collisions with the ATLAS detector. Journal of High Energy Physics, 2011, 2011, 1.	4.7	65
264	The ATLAS Inner Detector commissioning and calibration. European Physical Journal C, 2010, 70, 787-821.	3.9	95
265	Commissioning of the ATLAS Muon Spectrometer withÂcosmicÂrays. European Physical Journal C, 2010, 70, 875-916.	3.9	23
266	The ATLAS Simulation Infrastructure. European Physical Journal C, 2010, 70, 823-874.	3.9	1,187
267	Readiness of the ATLAS Tile Calorimeter for LHC collisions. European Physical Journal C, 2010, 70, 1193-1236.	3.9	121
268	Performance of the ATLAS detector using first collision data. Journal of High Energy Physics, 2010, 2010, 1.	4.7	18
269	Measurement of the W \hat{a} †' \hat{a} , " \hat{l} ½ and Z/ \hat{l} 3 * \hat{a} †' \hat{a} , " \hat{a} ," production cross sections in proton-proton collisions at \$ = 7;{ext{TeV}} \$ with the ATLAS detector. Journal of High Energy Physics, 2010, 2010, 1.	sqrt {s} 4.7	64