Seth L Masters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461796/publications.pdf

Version: 2024-02-01

25034 17105 21,518 131 57 122 citations h-index g-index papers 151 151 151 29705 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recessive NLRC4-Autoinflammatory Disease Reveals an Ulcerative Colitis Locus. Journal of Clinical Immunology, 2022, 42, 325-335.	3.8	17
2	Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Science Immunology, 2022, 7, eabi6763.	11.9	22
3	Organellar homeostasis and innate immune sensing. Nature Reviews Immunology, 2022, 22, 535-549.	22.7	49
4	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	14.8	16
5	Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nature Communications, 2022, 13, 2321.	12.8	43
6	ZAKα-driven ribotoxic stress response activates the human NLRP1 inflammasome. Science, 2022, 377, 328-335.	12.6	53
7	Constitutive immune mechanisms: mediators of host defence and immune regulation. Nature Reviews Immunology, 2021, 21, 137-150.	22.7	152
8	Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. Journal of Allergy and Clinical Immunology, 2021, 147, 267-279.	2.9	38
9	Differential recognition of HIV-stimulated IL- $1\hat{l}^2$ and IL-18 secretion through NLR and NAIP signalling in monocyte-derived macrophages. PLoS Pathogens, 2021, 17, e1009417.	4.7	18
10	NLRP1 variant M1184V decreases inflammasome activation in the context of DPP9 inhibition and asthma severity. Journal of Allergy and Clinical Immunology, 2021, 147, 2134-2145.e20.	2.9	11
11	The role of PLCÎ ³ 2 in immunological disorders, cancer, and neurodegeneration. Journal of Biological Chemistry, 2021, 297, 100905.	3.4	39
12	Small Extracellular Vesicle Enrichment of a Retrotransposon-Derived Double-Stranded RNA: A Means to Avoid Autoinflammation?. Biomedicines, 2021, 9, 1136.	3.2	2
13	<i>JEM</i> career launchpad. Journal of Experimental Medicine, 2021, 218, .	8.5	0
14	Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature, 2020, 577, 103-108.	27.8	198
15	TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell, 2020, 183, 636-649.e18.	28.9	453
16	Pharmacological validation of targets regulating CD14 during macrophage differentiation. EBioMedicine, 2020, 61, 103039.	6.1	24
17	Inhibition of interleukinâ€1β signalling promotes atherosclerotic lesion remodelling in mice with inflammatory arthritis. Clinical and Translational Immunology, 2020, 9, e1206.	3.8	11
18	NK cell–derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. Journal of Experimental Medicine, 2020, 217, .	8.5	60

#	Article	IF	CITATIONS
19	A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nature Communications, 2020, 11, 3150.	12.8	75
20	Connexin-Dependent Transfer of cGAMP to Phagocytes Modulates Antiviral Responses. MBio, 2020, 11, .	4.1	44
21	Compound Heterozygous Mutations of IL12RB1 in a Patient with Selective Defects in Th17 Differentiation. Journal of Clinical Immunology, 2020, 40, 647-652.	3.8	1
22	TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Reports, 2020, 31, 107492.	6.4	223
23	RIPLET, and not TRIM25, is required for endogenous RIGâ€lâ€dependent antiviral responses. Immunology and Cell Biology, 2019, 97, 840-852.	2.3	70
24	TRAIL-Expressing Monocyte/Macrophages Are Critical for Reducing Inflammation and Atherosclerosis. IScience, 2019, 12, 41-52.	4.1	33
25	SIDT1 Localizes to Endolysosomes and Mediates Double-Stranded RNA Transport into the Cytoplasm. Journal of Immunology, 2019, 202, 3483-3492.	0.8	33
26	Lack of protein prenylation promotes NLRP3 inflammasome assembly in human monocytes. Journal of Allergy and Clinical Immunology, 2019, 143, 2315-2317.e3.	2.9	15
27	Pattern Recognition Receptors in Autoinflammation. , 2019, , 61-87.		2
28	The <i>Salmonella</i> pathogenicity island-2 subverts human NLRP3 and NLRC4 inflammasome responses. Journal of Leukocyte Biology, 2019, 105, 401-410.	3.3	38
29	The NLRP3 Inflammasome Suppresses Protective Immunity to Gastrointestinal Helminth Infection. Cell Reports, 2018, 23, 1085-1098.	6.4	48
30	Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metabolism, 2018, 27, 1096-1110.e5.	16.2	309
31	Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell, 2018, 33, 634-648.e5.	16.8	163
32	Microparticulate Caspase 1 Regulates Gasdermin D and Pulmonary Vascular Endothelial Cell Injury. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 56-64.	2.9	66
33	Identification of a second binding site on the TRIM25 B30.2 domain. Biochemical Journal, 2018, 475, 429-440.	3.7	11
34	Mechanisms of NLRP1-Mediated Autoinflammatory Disease in Humans and Mice. Journal of Molecular Biology, 2018, 430, 142-152.	4.2	63
35	Generation of Genetic Knockouts in Myeloid Cell Lines Using a Lentiviral CRISPR/Cas9 System. Methods in Molecular Biology, 2018, 1714, 41-55.	0.9	19
36	The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL- $1\hat{1}^2$ Activation. Cell Reports, 2018, 25, 2339-2353.e4.	6.4	164

#	Article	IF	CITATIONS
37	Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. Journal of Biological Chemistry, 2018, 293, 18864-18878.	3.4	172
38	The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clinical Science, 2018, 132, 1901-1924.	4.3	22
39	NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nature Communications, 2018, 9, 3728.	12.8	81
40	Ximmer: a system for improving accuracy and consistency of CNV calling from exome data. GigaScience, 2018, 7, .	6.4	32
41	Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)–LRR oligomerization interface. Journal of Allergy and Clinical Immunology, 2018, 142, 1956-1967.e6.	2.9	52
42	An Update on Autoinflammatory Diseases: Interferonopathies. Current Rheumatology Reports, 2018, 20, 38.	4.7	50
43	An Update on Autoinflammatory Diseases: Relopathies. Current Rheumatology Reports, 2018, 20, 39.	4.7	41
44	An Update on Autoinflammatory Diseases: Inflammasomopathies. Current Rheumatology Reports, 2018, 20, 40.	4.7	68
45	Interleukin-1 receptor–associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. Journal of Biological Chemistry, 2018, 293, 15195-15207.	3.4	86
46	A Mutation Outside the Dimerization Domain Causing Atypical STING-Associated Vasculopathy With Onset in Infancy. Frontiers in Immunology, 2018, 9, 1535.	4.8	90
47	Membrane vesicles from <i>Pseudomonas aeruginosa</i> activate the noncanonical inflammasome through caspaseâ€5 in human monocytes. Immunology and Cell Biology, 2018, 96, 1120-1130.	2.3	65
48	Caspase substrates won't be defined by a four-letter code. Journal of Biological Chemistry, 2018, 293, 7068-7069.	3.4	3
49	Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E961-E969.	7.1	337
50	Inflammasome Priming in Sterile Inflammatory Disease. Trends in Molecular Medicine, 2017, 23, 165-180.	6.7	193
51	EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nature Microbiology, 2017, 2, 16258.	13.3	141
52	Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology, 2017, 17, 208-214.	22.7	332
53	NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. Journal of Hepatology, 2017, 66, 1037-1046.	3.7	738
54	Protective Effect of Inflammasome Activation by Hydrogen Peroxide in a Mouse Model of Septic Shock. Critical Care Medicine, 2017, 45, e184-e194.	0.9	9

#	Article	IF	CITATIONS
55	Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. Journal of Experimental Medicine, 2017, 214, 1737-1752.	8.5	289
56	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	28.8	63
57	The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome. Journal of Biological Chemistry, 2017, 292, 6869-6881.	3.4	53
58	A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Annals of the Rheumatic Diseases, 2017, 76, 2085-2094.	0.9	118
59	SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity, 2017, 47, 498-509.e6.	14.3	109
60	Intercellular communication for innate immunity. Molecular Immunology, 2017, 86, 16-22.	2.2	32
61	Legionella pneumophila Strain 130b Evades Macrophage Cell Death Independent of the Effector SidF in the Absence of Flagellin. Frontiers in Cellular and Infection Microbiology, 2017, 7, 35.	3.9	18
62	A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization. Frontiers in Cellular and Infection Microbiology, 2017, 7, 219.	3.9	40
63	Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan. Scientific Reports, 2016, 6, 25060.	3.3	40
64	Granzyme M has a critical role in providing innate immune protection in ulcerative colitis. Cell Death and Disease, 2016, 7, e2302-e2302.	6.3	14
65	The modern interleukin-1 superfamily: Divergent roles in obesity. Seminars in Immunology, 2016, 28, 441-449.	5.6	26
66	Avenues to autoimmune arthritis triggered by diverse remote inflammatory challenges. Journal of Autoimmunity, 2016, 73, 120-129.	6.5	3
67	Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation. Cell, 2016, 167, 187-202.e17.	28.9	317
68	Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Science Translational Medicine, 2016, 8, 332ra45.	12.4	241
69	Whole exome sequencing in systemic juvenile idiopathic arthritis. Pathology, 2016, 48, S43.	0.6	0
70	IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metabolism, 2016, 23, 155-164.	16.2	133
71	NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspaseâ€4 and caspaseâ€5. European Journal of Immunology, 2015, 45, 2918-2926.	2.9	283
72	Whole exome sequencing in systemic juvenile idiopathic arthritis. Pediatric Rheumatology, 2015, 13, .	2.1	0

#	Article	IF	CITATIONS
73	Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1 \hat{l}^2 . Journal of Experimental Medicine, 2015, 212, 927-938.	8.5	120
74	Broadening the definition of autoinflammation. Seminars in Immunopathology, 2015, 37, 311-312.	6.1	11
75	Regulation of Starch Stores by a Ca2+-Dependent Protein Kinase Is Essential for Viable Cyst Development in Toxoplasma gondii. Cell Host and Microbe, 2015, 18, 670-681.	11.0	71
76	A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine, 2015, 21, 248-255.	30.7	1,967
77	The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue–resident regulatory T cells. Nature Immunology, 2015, 16, 276-285.	14.5	442
78	RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nature Communications, 2015, 6, 6282.	12.8	514
79	Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice. Journal of Immunology, 2015, 195, 1233-1241.	0.8	32
80	Monogenic autoinflammatory diseases: Cytokinopathies. Cytokine, 2015, 74, 237-246.	3.2	32
81	ATF3 Is a Key Regulator of Macrophage IFN Responses. Journal of Immunology, 2015, 195, 4446-4455.	0.8	121
82	A Toxoplasma gondii Gluconeogenic Enzyme Contributes to Robust Central Carbon Metabolism and Is Essential for Replication and Virulence. Cell Host and Microbe, 2015, 18, 210-220.	11.0	95
83	Fas regulates neutrophil lifespan during viral and bacterial infection. Journal of Leukocyte Biology, 2015, 97, 321-326.	3.3	28
84	An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell. ELife, $2015, 4, .$	6.0	99
85	Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1 \hat{l}^2 . Journal of Cell Biology, 2015, 209, 2095OIA104.	5.2	0
86	Activation of the NLRP3 Inflammasome Complex is Not Required for Stress-Induced Death of Pancreatic Islets. PLoS ONE, 2014, 9, e113128.	2.5	26
87	The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages. MBio, 2014, 5, e00003-14.	4.1	181
88	Dual Role for Inflammasome Sensors NLRP1 and NLRP3 in Murine Resistance to Toxoplasma gondii. MBio, 2014, 5, .	4.1	244
89	Adipose Tissue Macrophages Promote Myelopoiesis and Monocytosis in Obesity. Cell Metabolism, 2014, 19, 821-835.	16.2	395
90	Innate immunity. Current Opinion in Immunology, 2014, 26, v-vi.	5. 5	11

#	Article	IF	Citations
91	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	28.9	492
92	A healthy appetite for <i>Toxoplasma</i> at the cellular level. Immunology and Cell Biology, 2014, 92, 813-814.	2.3	0
93	126. Cytokine, 2014, 70, 58.	3.2	0
94	NLRP1a Expression in Srebp-1a-Deficient Mice. Cell Metabolism, 2014, 19, 345-346.	16.2	6
95	Fas Controls Neutrophil Lifespan during Bacterial and Viral Infection. Blood, 2014, 124, 1579-1579.	1.4	0
96	Activating the NLRP3 Inflammasome Using the Amyloidogenic Peptide IAPP. Methods in Molecular Biology, 2013, 1040, 9-18.	0.9	18
97	Transcriptional analysis of the three Nlrp1 paralogs in mice. BMC Genomics, 2013, 14, 188.	2.8	62
98	miRâ€223: infection, inflammation and cancer. Journal of Internal Medicine, 2013, 274, 215-226.	6.0	360
99	Specific inflammasomes in complex diseases. Clinical Immunology, 2013, 147, 223-228.	3.2	79
100	111. Cytokine, 2013, 63, 269.	3.2	0
101	Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496, 238-242.	27.8	2,845
102	Linking Metabolic Abnormalities to Apoptotic Pathways in Beta Cells in Type 2 Diabetes. Cells, 2013, 2, 266-283.	4.1	44
103	Necroptotic Death Of RIPK1-Deficient HSC Compromises Hematopoiesis. Blood, 2013, 122, 218-218.	1.4	0
104	Cutting Edge: miR-223 and EBV miR-BART15 Regulate the NLRP3 Inflammasome and IL- $1\hat{1}^2$ Production. Journal of Immunology, 2012, 189, 3795-3799.	0.8	387
105	NLRP1 Inflammasome Activation Induces Pyroptosis of Hematopoietic Progenitor Cells. Immunity, 2012, 37, 1009-1023.	14.3	257
106	Activation of the NLRP1 Inflammasome Induces the Pyroptotic Death of Hematopoietic Progenitor Cells. Blood, 2012, 120, 1213-1213.	1.4	0
107	TLR Regulation of SPSB1 Controls Inducible Nitric Oxide Synthase Induction. Journal of Immunology, 2011, 187, 3798-3805.	0.8	62
108	Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends in Molecular Medicine, 2011, 17, 276-282.	6.7	124

#	Article	IF	Citations
109	The Inflammasome in Atherosclerosis and Type 2 Diabetes. Science Translational Medicine, 2011, 3, 81ps17.	12.4	134
110	Regulation of interleukin $\hat{a} \in \hat{1}\hat{1}^2$ by interferon $\hat{a} \in \hat{1}^3$ is species specific, limited by suppressor of cytokine signalling 1 and influences interleukin $\hat{a} \in 17$ production. EMBO Reports, 2010, 11, 640-646.	4.5	72
111	Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL- $1\hat{l}^2$ in type 2 diabetes. Nature Immunology, 2010, 11, 897-904.	14.5	1,149
112	Release of the mitochondrial endosymbiont helps explain sterile inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E32.	7.1	2
113	The SPRY domain–containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. Journal of Cell Biology, 2010, 190, 129-141.	5.2	88
114	Deficiency of 5-hydroxyisourate hydrolase causes hepatomegaly and hepatocellular carcinoma in mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16625-16630.	7.1	37
115	Clinical features and functional significance of the P369S/R408Q variant in pyrin, the familial Mediterranean fever protein. Annals of the Rheumatic Diseases, 2010, 69, 1360-1363.	0.9	86
116	The SPRY domain–containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. Journal of Experimental Medicine, 2010, 207, i22-i22.	8.5	0
117	Familial mediterranean fever with a single <i>MEFV</i> mutation: Where is the second hit?. Arthritis and Rheumatism, 2009, 60, 1851-1861.	6.7	229
118	SPRY Domain-Containing SOCS Box Protein 2: Crystal Structure and Residues Critical for Protein Binding. Journal of Molecular Biology, 2009, 386, 662-674.	4.2	40
119	<i>Horror Autoinflammaticus</i> : The Molecular Pathophysiology of Autoinflammatory Disease. Annual Review of Immunology, 2009, 27, 621-668.	21.8	970
120	An Autoinflammatory Disease with Deficiency of the Interleukin-1–Receptor Antagonist. New England Journal of Medicine, 2009, 360, 2426-2437.	27.0	892
121	Pyrin Modulates the Intracellular Distribution of PSTPIP1. PLoS ONE, 2009, 4, e6147.	2.5	59
122	The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment. Blood, 2008, 112, 1794-1803.	1.4	139
123	Protein kinase antagonists as therapeutic agents for immunological and inflammatory disorders. , 2008, , 1341-1351.		0
124	<i>STAT4</i> and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus. New England Journal of Medicine, 2007, 357, 977-986.	27.0	914
125	Recent advances in the molecular pathogenesis of hereditary recurrent fevers. Current Opinion in Allergy and Clinical Immunology, 2006, 6, 428-433.	2.3	45
126	The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4–binding residues. Nature Structural and Molecular Biology, 2006, 13, 77-84.	8.2	72

SETH L MASTERS

#	Article	IF	CITATION
127	Dynamics of the SPRY domain-containing SOCS box protein 2: Flexibility of key functional loops. Protein Science, 2006, 15, 2761-2772.	7.6	14
128	The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL- $1^{\hat{1}^2}$ production. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9982-9987.	7.1	502
129	Letter to the Editor: Backbone 1H, 13C and 15N assignments of the 25 kDa SPRY domain-containing SOCS box protein 2 (SSB-2). Journal of Biomolecular NMR, 2005, 31, 69-70.	2.8	14
130	Genetic Deletion of Murine SPRY Domain-Containing SOCS Box Protein 2 (SSB-2) Results in Very Mild Thrombocytopenia. Molecular and Cellular Biology, 2005, 25, 5639-5647.	2.3	13
131	The molybdate binding protein Mop from Haemophilus influenzae—Biochemical and thermodynamic characterisation. Archives of Biochemistry and Biophysics, 2005, 439, 105-112.	3.0	10