Tariq Ezaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461581/publications.pdf

Version: 2024-02-01

128	4,463	34 h-index	60
papers	citations		g-index
133	133 docs citations	133	2928
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Implications of genome-wide single nucleotide polymorphisms in jade perch (Scortum barcoo) reveals the putative XX/XY sex-determination system, facilitating a new chapter of sex control in aquaculture. Aquaculture, 2022, 548, 737587.	3.5	6
2	Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma, 2022, 131, 29-45.	2.2	16
3	Sex-specific splicing of Z- and W-borne <i>nr5a1</i> alleles suggests sex determination is controlled by chromosome conformation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
4	Integrating Cytogenetics and Population Genomics: Allopatry and Neo-Sex Chromosomes May Have Shaped the Genetic Divergence in the Erythrinus erythrinus Species Complex (Teleostei,) Tj ETQq0 0 0 rgBT /Ove	rlo 2l 810 T	f 5 ® 617 Td (0
5	Fitness of Isidorella newcombi Following Multi-generational Cu Exposures: Mortality, Cellular Biomarkers and Life History Responses. Archives of Environmental Contamination and Toxicology, 2022, 82, 520.	4.1	O
6	Matamatas Chelus spp. (Testudines, Chelidae) have a remarkable evolutionary history of sex chromosomes with a long-term stable XY microchromosome system. Scientific Reports, 2022, 12, 6676.	3.3	1
7	Sex reversal explains some, but not all, climate-mediated sex ratio variation within a viviparous reptile. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	2
8	Identification of ancestral sex chromosomes in the frog <i>Glandirana rugosa</i> bearing <scp>XXâ€XY</scp> and <scp>ZZâ€ZW</scp> sexâ€determining systems. Molecular Ecology, 2022, 31, 3859-3870.	3.9	6
9	Genome-wide SNP analysis of Siamese cobra (Naja kaouthia) reveals the molecular basis of transitions between Z and W sex chromosomes and supports the presence of an ancestral super-sex chromosome in amniotes. Genomics, 2021, 113, 624-636.	2.9	18
10	Differences in Homomorphic Sex Chromosomes Are Associated with Population Divergence in Sex Determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cells, 2021, 10, 291.	4.1	8
11	Uniparental Genome Elimination in Australian Carp Gudgeons. Genome Biology and Evolution, 2021, 13,	2.5	15
12	Cytogenetic Analysis of <i>Panaqolus tankei</i> Cramer & Sousa, 2016 (Siluriformes, Loricariidae), an Ornamental Fish Endemic to Xingu River, Brazil. Cytogenetic and Genome Research, 2021, 161, 187-194.	1.1	6
13	Pleistocene divergence in the absence of gene flow among populations of a viviparous reptile with intraspecific variation in sex determination. Ecology and Evolution, 2021, 11, 5575-5583.	1.9	5
14	A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, <i>Platyplectrum ornatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	26
15	Evolution of a Multiple Sex-Chromosome System by Three-Sequential Translocations among Potential Sex-Chromosomes in the Taiwanese Frog Odorrana swinhoana. Cells, 2021, 10, 661.	4.1	9
16	Revisiting the Karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a Half-Century Delay: Bridging the Gap in the Chromosomal Evolution of Reptiles. Cells, 2021, 10, 1397.	4.1	9
17	Do male and female heterogamety really differ in expression regulation? Lack of global dosage balance in pygopodid geckos. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200102.	4.0	17

Balanced Chromosomal Rearrangements Associated with Hypoprolificacy in Australian Boars (Sus) Tj ETQq0 0 0 rg BT./Overlock 10 Tf 50

#	Article	IF	CITATIONS
19	The Snakeskin Gourami (Trichopodus pectoralis) Tends to Exhibit XX/XY Sex Determination. Fishes, 2021, 6, 43.	1.7	4
20	Genome-wide SNP analysis suggests male heterogamety in bighead catfish (Clarias macrocephalus,). Aquaculture, 2021, 543, 737005.	3.5	21
21	Australian lizards are outstanding models for reproductive biology research. Australian Journal of Zoology, 2021, 68, 168-199.	1.0	9
22	Sex-Biased Mortality and Sex Reversal Shape Wild Frog Sex Ratios. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	5
23	Against the mainstream: exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes). Chromosome Research, 2021, 29, 391-416.	2.2	11
24	Sex-Determination Mechanisms among Populations within Cryptic Species Complex of Calotes (Squamata: Agamidae: Draconinae). Dna, 2021, 1, 49-67.	1.3	0
25	Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	84
26	Evidence of Interspecific Chromosomal Diversification in Rainbowfishes (Melanotaeniidae, Teleostei). Genes, 2020, 11, 818.	2.4	3
27	Landscape of snake' sex chromosomes evolution spanning 85 MYR reveals ancestry of sequences despite distinct evolutionary trajectories. Scientific Reports, 2020, 10, 12499.	3.3	14
28	A Novel Paradigm for Sex Chromosome Turnover: Y and W Changes, X and Z Remain. BioEssays, 2020, 42, 2000152.	2.5	0
29	The Response of the Planorbid Snail Isidorella newcombi to Chronic Copper Exposure Over a 28-Day Period: Linking Mortality, Cellular Biomarkers, and Reproductive Responses. Archives of Environmental Contamination and Toxicology, 2020, 79, 391-405.	4.1	1
30	Genome Complexity Reduction High-Throughput Genome Sequencing of Green Iguana (Iguana iguana) Reveal a Paradigm Shift in Understanding Sex-Chromosomal Linkages on Homomorphic X and Y Sex Chromosomes. Frontiers in Genetics, 2020, 11, 556267.	2.3	15
31	The Amazonian Red Side-Necked Turtle Rhinemys rufipes (Spix, 1824) (Testudines, Chelidae) Has a GSD Sex-Determining Mechanism with an Ancient XY Sex Microchromosome System. Cells, 2020, 9, 2088.	4.1	10
32	Karyotype Characterisation of Two Australian Dragon Lizards (Squamata: Agamidae: Amphibolurinae) Reveals Subtle Chromosomal Rearrangements Between Related Species with Similar Karyotypes. Cytogenetic and Genome Research, 2020, 160, 610-624.	1.1	0
33	Revisiting the Karyotype Evolution of Neotropical Boid Snakes: A Puzzle Mediated by Chromosomal Fissions. Cells, 2020, 9, 2268.	4.1	2
34	Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography, 2020, 43, 1291-1304.	4.5	10
35	Multiple Lines of Evidence Indicate Limited Natural Recruitment of Golden Perch (Macquaria ambigua) in the Highly Regulated Lachlan River. Water (Switzerland), 2020, 12, 1636.	2.7	4
36	Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. Conservation Genetics Resources, 2020, 12, 709-725.	0.8	21

#	Article	IF	CITATIONS
37	Cross-Species BAC Mapping Highlights Conservation of Chromosome Synteny across Dragon Lizards (Squamata: Agamidae). Genes, 2020, 11, 698.	2.4	5
38	Molecular Cytogenetic Analysis in Freshwater Prawns of the Genus Macrobrachium (Crustacea:) Tj ETQq0 0 0 rgB	ГДQverloc	k J 0 Tf 50 7
39	Comparative cytogenetic survey of the giant bonytongue Arapaima fish (Osteoglossiformes:) Tj ETQq $1\ 1\ 0.78431$ lchthyology, 2020, 18 , .	4 rgBT /O	verlock 10 T 2
40	Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes, 2019, 10, 627.	2.4	79
41	Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes,) Tj ETQq1 1 0.784314 rgB Sciences, 2019, 20, 4296.	T/Overloc 4.1	k 10 Tf 50 5 17
42	Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria ambigua) and Murray Cod (Maccullochella peelii) (Percichthyidae). International Journal of Molecular Sciences, 2019, 20, 4244.	4.1	7
43	Characterization of the karyotype and accumulation of repetitive sequences in Australian Darling hardyhead <i>Craterocephalus amniculus</i> (Atheriniformes, Teleostei). PeerJ, 2019, 7, e7347.	2.0	6
44	Interspecific Genetic Differences and Historical Demography in South American Arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum). Genes, 2019, 10, 693.	2.4	10
45	Sexual conflict in action: An antagonistic relationship between maternal and paternal sex allocation in the tammar wallaby, Notamacropus eugenii. Ecology and Evolution, 2019, 9, 4340-4348.	1.9	5
46	Evolutionary Insights of the ZW Sex Chromosomes in Snakes: A New Chapter Added by the Amazonian Puffing Snakes of the Genus Spilotes. Genes, 2019, 10, 288.	2.4	16
47	The Molecular Basis of Freshwater Adaptation in Prawns: Insights from Comparative Transcriptomics of Three <i>Macrobrachium</i> Species. Genome Biology and Evolution, 2019, 11, 1002-1018.	2.5	23
48	Cytogenetics, genomics and biodiversity of the South American and African Arapaimidae fish family (Teleostei, Osteoglossiformes). PLoS ONE, 2019, 14, e0214225.	2.5	21
49	Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS ONE, 2019, 14, e0212683.	2.5	25
50	Identifying sex-linked markers in Litoria aurea: a novel approach to understanding sex chromosome evolution in an amphibian. Scientific Reports, 2019, 9, 16591.	3.3	15
51	ZW Sex Chromosomes in Australian Dragon Lizards (Agamidae) Originated from a Combination of Duplication and Translocation in the Nucleolar Organising Region. Genes, 2019, 10, 861.	2.4	15
52	Application of DArT seq derived SNP tags for comparative genome analysis in fishes; An alternative pipeline using sequence data from a non-traditional model species, Macquaria ambigua. PLoS ONE, 2019, 14, e0226365.	2.5	11
53	Understanding the Evolution of Reptile Chromosomes through Applications of Combined Cytogenetics and Genomics Approaches. Cytogenetic and Genome Research, 2019, 157, 7-20.	1.1	56
54	Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH). Scientific Reports, 2019, 9, 1112.	3.3	17

#	Article	IF	CITATIONS
55	Molecular evidence for sex reversal in wild populations of green frogs (<i>Rana clamitans</i>). PeerJ, 2019, 7, e6449.	2.0	28
56	Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination. Genome Biology and Evolution, 2018, 10, 1079-1087.	2.5	43
57	Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes). Chromosoma, 2018, 127, 115-128.	2.2	35
58	Arsenic concentrations and speciation in Australian and imported rice and commercial rice products. Environmental Chemistry, 2018, 15, 387.	1.5	9
59	Gonadal and Endocrine Analysis of a Gynandromorphic Chicken. Endocrinology, 2018, 159, 3492-3502.	2.8	22
60	Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?. Genes, 2018, 9, 239.	2.4	28
61	From Chromosomes to Genome: Insights into the Evolutionary Relationships and Biogeography of Old World Knifefishes (Notopteridae; Osteoglossiformes). Genes, 2018, 9, 306.	2.4	17
62	First chromosomal analysis in Gymnarchus niloticus (Gymnarchidae: Osteoglossiformes): insights into the karyotype evolution of this ancient fish order. Biological Journal of the Linnean Society, 2018, 125, 83-92.	1.6	9
63	Editorial: Evolutionary Feedbacks Between Population Biology and Genome Architecture. Frontiers in Genetics, 2018, 9, 329.	2.3	2
64	Reconstruction of female heterogamety from admixture of <scp>XX</scp> â€ <scp>XY</scp> and <scp>ZZ</scp> â€ <scp>ZW</scp> sex hromosome systems within a frog species. Molecular Ecology, 2018, 27, 4078-4089.	3.9	30
65	Early Stages of XY Sex Chromosomes Differentiation in the Fish Hoplias malabaricus (Characiformes,) Tj ETQq1 I	. 0.78431	4 rgBT /Over
66	The response of Isidorella newcombi to copper exposure: Using an integrated biological framework to interpret transcriptomic responses from RNA-seq analysis. Aquatic Toxicology, 2017, 185, 183-192.	4.0	8
67	Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity, 2017, 118, 276-283.	2.6	44
68	Genomic Organization of Repetitive DNAs and Differentiation of an XX/XY Sex Chromosome System in the Amazonian Puffer Fish, <i>Colomesus asellus </i> (Tetraodontiformes). Cytogenetic and Genome Research, 2017, 153, 96-104.	1.1	11
69	Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements?. Journal of Heredity, 2017, 108, 94-105.	2.4	65
70	Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata). BMC Evolutionary Biology, 2017, 17, 193.	3.2	18
71	Evolutionary Changes in Sensitivity to Hormonally Induced Gonadal Sex Reversal in a Frog Species. Sexual Development, 2016, 10, 79-90.	2.0	15
72	Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics, 2016, 17, 844.	2.8	58

#	Article	IF	CITATIONS
73	Karyotype and Mapping of Repetitive DNAs in the African Butterfly Fish <i>Pantodon buchholzi, </i> the Sole Species of the Family Pantodontidae. Cytogenetic and Genome Research, 2016, 149, 312-320.	1.1	15
74	Identification of interleukin genes in Pogona vitticeps using a de novo transcriptome assembly from RNA-seq data. Immunogenetics, 2016, 68, 719-731.	2.4	3
75	Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma, 2016, 125, 111-123.	2.2	71
76	Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps. Molecular Cytogenetics, 2015, 8, 104.	0.9	4
77	Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara <i>Sphenodon punctatus</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1439-1451.	1.8	28
78	Restriction Site-Associated DNA Sequencing (RAD-seq) Reveals an Extraordinary Number of Transitions among Gecko Sex-Determining Systems. Molecular Biology and Evolution, 2015, 32, 1296-1309.	8.9	233
79	Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature, 2015, 523, 79-82.	27.8	282
80	Repetitive Sequence and Sex Chromosome Evolution in Vertebrates. Advances in Evolutionary Biology, 2014, 2014, 1-9.	1.0	41
81	Molecular evolution of <i>Dmrt1</i> accompanies change of sex-determining mechanisms in reptilia. Biology Letters, 2014, 10, 20140809.	2.3	20
82	Non-Homologous Sex Chromosomes in Two Geckos (Gekkonidae: Gekkota) with Female Heterogamety. Cytogenetic and Genome Research, 2014, 143, 251-258.	1.1	21
83	Tracing the evolution of amniote chromosomes. Chromosoma, 2014, 123, 201-216.	2.2	26
84	Highly Differentiated ZW Sex Microchromosomes in the Australian Varanus Species Evolved through Rapid Amplification of Repetitive Sequences. PLoS ONE, 2014, 9, e95226.	2.5	48
85	Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of epigenetic regulation. AIMS Genetics, 2014, 01, 034-054.	1.9	7
86	Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genomics, 2013, 14, 899.	2.8	41
87	Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Chromosome Research, 2013, 21, 361-374.	2.2	50
88	Novel evolutionary pathways of sexâ€determining mechanisms. Journal of Evolutionary Biology, 2013, 26, 2544-2557.	1.7	29
89	Microchromosomes., 2013,, 405-407.		0
90	Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata). Molecular Cytogenetics, 2013, 6, 60.	0.9	45

#	Article	IF	CITATIONS
91	Isolation and characterisation of novel microsatellite and mitochondrial DNA markers for the Eastern Water Dragon (Physignathus lesueurii). Conservation Genetics Resources, 2012, 4, 113-116.	0.8	5
92	Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Research, 2012, 20, 7-19.	2.2	115
93	Foreword: sex and sex chromosomes—new clues from nonmodel species. Chromosome Research, 2012, 20, 1-5.	2.2	6
94	Transitions Between Sex-Determining Systems in Reptiles and Amphibians. Annual Review of Genomics and Human Genetics, 2011, 12, 391-406.	6.2	139
95	Evolutionary transitions between mechanisms of sex determination in vertebrates. Biology Letters, 2011, 7, 443-448.	2.3	92
96	Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-6.	3.0	8
97	Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Research, 2010, 18, 787-800.	2.2	79
98	Globin gene structure in a reptile supports the transpositional model for amniote \hat{l}_{\pm} - and \hat{l}^2 -globin gene evolution. Chromosome Research, 2010, 18, 897-907.	2.2	12
99	Extension, single-locus conversion and physical mapping of sex chromosome sequences identify the Z microchromosome and pseudo-autosomal region in a dragon lizard, Pogona vitticeps. Heredity, 2010, 104, 410-417.	2.6	31
100	Are Reptiles Predisposed to Temperature- Dependent Sex Determination?. Sexual Development, 2010, 4, 7-15.	2.0	39
101	Recombination and Nucleotide Diversity in the Sex Chromosomal Pseudoautosomal Region of the Emu, Dromaius novaehollandiae. Journal of Heredity, 2009, 100, 125-136.	2.4	24
102	Isolation and development of a molecular sex marker for Bassiana duperreyi, a lizard with XX/XY sex chromosomes and temperature-induced sex reversal. Molecular Genetics and Genomics, 2009, 281, 665-672.	2.1	37
103	Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards. Chromosome Research, 2009, 17, 91-98.	2.2	77
104	Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Research, 2009, 17, 1015-1024.	2.2	35
105	The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Research, 2009, 17, 965-973.	2.2	45
106	Sex Chromosome Evolution in Lizards: Independent Origins and Rapid Transitions. Cytogenetic and Genome Research, 2009, 127, 249-260.	1.1	163
107	The First Cytogenetic Map of the Tuatara, <i>Sphenodon punctatus</i> . Cytogenetic and Genome Research, 2009, 127, 213-223.	1.1	27
108	An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: A new piece in the puzzle of sex chromosome evolution in turtles. Chromosome Research, 2008, 16, 815-825.	2.2	44

#	Article	IF	CITATIONS
109	A simple non-invasive protocol to establish primary cell lines from tail and toe explants for cytogenetic studies in Australian dragon lizards (Squamata: Agamidae). Cytotechnology, 2008, 58, 135-139.	1.6	24
110	Characterization, chromosomal location, and genomic neighborhood of a ratite ortholog of a gene with gonadal expression in mammals. Integrative and Comparative Biology, 2008, 48, 505-511.	2.0	3
111	Identification of Cryptic Sex Chromosomes and Isolation of X- and Y-Borne Genes. Methods in Molecular Biology, 2008, 422, 239-251.	0.9	4
112	Multiple peroxisome proliferator-activated receptor \hat{l}^2 subtypes from Atlantic salmon (Salmo salar). Journal of Molecular Endocrinology, 2007, 38, 391-400.	2.5	57
113	Reassignment of chicken W chromosome sequences to the Z chromosome by fluorescence in situ hybridization (FISH). Cytogenetic and Genome Research, 2007, 116, 132-134.	1.1	12
114	Frequency of Cancer Genes on the Chicken Z Chromosome and Its Human Homologues: Implications for Sex Chromosome Evolution. Comparative and Functional Genomics, 2007, 2007, 1-8.	2.0	2
115	DMRT gene cluster analysis in the platypus: New insights into genomic organization and regulatory regions. Genomics, 2007, 89, 10-21.	2.9	52
116	Temperature Sex Reversal Implies Sex Gene Dosage in a Reptile. Science, 2007, 316, 411-411.	12.6	249
117	A new look at the evolution of avian sex chromosomes. Cytogenetic and Genome Research, 2007, 117, 103-109.	1.1	45
118	An XX/XY sex microchromosome system in a freshwater turtle, Chelodina longicollis (Testudines:) Tj ETQq0 0 0 r	gBT <i> </i> Overl 2.2	ock 10 Tf 50
119	Relationships between Vertebrate ZW and XY Sex Chromosome Systems. Current Biology, 2006, 16, R736-R743.	3.9	214
120	The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Research, 2005, 13, 763-776.	2.2	194
121	Three Peroxisome Proliferator-Activated Receptor Isotypes from Each of Two Species of Marine Fish. Endocrinology, 2005, 146, 3150-3162.	2.8	174
122	Spontaneous diploidization of the maternal chromosome set in Nile tilapia (Oreochromis niloticus L.) eggs. Aquaculture Research, 2004, 35, 271-277.	1.8	23
123	Use of microsatellite loci and AFLP markers to verify gynogenesis and clonal lines in Nile tilapia Oreochromis niloticus L Aquaculture Research, 2004, 35, 1472-1481.	1.8	13
124	Isolation and Physical Mapping of Sex-Linked AFLP Markers in Nile Tilapia (Oreochromis niloticus L.). Marine Biotechnology, 2004, 6, 435-445.	2.4	88
125	Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L Aquaculture, 2004, 232, 205-214.	3.5	40
126	Evidence for two unlinked "sex reversal―loci in the Nile tilapia, Oreochromis niloticus, and for linkage of one of these to the red body colour gene. Aquaculture, 2004, 234, 51-63.	3.5	23

Tariq Ezaz

#	Article	lF	CITATIONS
127	Analysis of repetitive DNA sequences in the sex chromosomes of <i>Oreochromis niloticus</i> . Cytogenetic and Genome Research, 2003, 101, 314-319.	1.1	35
128	Karyotype evolution in Tilapia: mitotic and meiotic chromosome analysis of Oreochromis karongae and O. niloticus x O. karongae hybrids. Genetica, 2002, 115, 169-177.	1.1	24