Ralph A Saporito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of chemical ecology in poison frogs. Chemoecology, 2012, 22, 159-168.	1.1	162
2	Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8045-8050.	7.1	149
3	Experimental Evidence for Aposematism in the Dendrobatid Poison Frog Oophaga pumilio. Copeia, 2007, 2007, 1006-1011.	1.3	145
4	Oribatid mites as a major dietary source for alkaloids in poison frogs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8885-8890.	7.1	144
5	Arthropod Alkaloids in Poison Frogs: A Review of the â€~Dietary Hypothesis'. Heterocycles, 2009, 79, 277.	0.7	117
6	Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon, 2007, 50, 757-778.	1.6	112
7	Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology, 2012, 22, 141-158.	1.1	96
8	Geographic and Seasonal Variation in Alkaloid-Based Chemical Defenses of Dendrobates pumilio from Bocas del Toro, Panama. Journal of Chemical Ecology, 2006, 32, 795-814.	1.8	81
9	Evidence of maternal provisioning of alkaloidâ€based chemical defenses in the strawberry poison frog <i>Oophaga pumilio</i> . Ecology, 2014, 95, 587-593.	3.2	72
10	A Test of Aposematism in the Dendrobatid Poison Frog <i>Oophaga pumilio</i> : The Importance of Movement in Clay Model Experiments. Journal of Herpetology, 2014, 48, 249-254.	0.5	59
11	Dietary Alkaloid Sequestration in a Poison Frog: An Experimental Test of Alkaloid Uptake in Melanophryniscus stelzneri (Bufonidae). Journal of Chemical Ecology, 2013, 39, 1400-1406.	1.8	57
12	Sex-Related Differences in Alkaloid Chemical Defenses of the Dendrobatid Frog <i>Oophaga pumilio</i> from Cayo Nancy, Bocas del Toro, Panama. Journal of Natural Products, 2010, 73, 317-321.	3.0	55
13	Not all colors are equal: predation and color polytypism in the aposematic poison frog Oophaga pumilio. Evolutionary Ecology, 2013, 27, 831-845.	1.2	54
14	Contrasting Colors of an Aposematic Poison Frog Do Not Affect Predation. Annales Zoologici Fennici, 2011, 48, 29-38.	0.6	42
15	Weak warning signals can persist in the absence of gene flow. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19037-19045.	7.1	42
16	Alkaloids in the Mite Scheloribates laevigatus: Further Alkaloids Common to Oribatid Mites and Poison Frogs. Journal of Chemical Ecology, 2011, 37, 213-218.	1.8	38
17	The relationship between poison frog chemical defenses and age, body size, and sex. Frontiers in Zoology, 2015, 12, 27.	2.0	34
18	Individual and Geographic Variation of Skin Alkaloids in Three Species of Madagascan Poison Frogs (Mantella). Journal of Chemical Ecology, 2008, 34, 252-279.	1.8	32

RALPH A SAPORITO

#	Article	IF	CITATIONS
19	Variation in alkaloid-based microbial defenses of the dendrobatid poison frog Oophaga pumilio. Chemoecology, 2015, 25, 169-178.	1.1	31
20	N-Methyldecahydroquinolines: An Unexpected Class of Alkaloids from Amazonian Poison Frogs (Dendrobatidae). Journal of Natural Products, 2009, 72, 1110-1114.	3.0	30
21	Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods. Journal of Chemical Ecology, 2017, 43, 273-289.	1.8	30
22	The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae). Chemoecology, 2012, 22, 169-178.	1.1	29
23	Arthropod predation in a dendrobatid poison frog: does frog life stage matter?. Zoology, 2016, 119, 169-174.	1.2	29
24	Sequestered and Synthesized Chemical Defenses in the Poison Frog Melanophryniscus moreirae. Journal of Chemical Ecology, 2015, 41, 505-512.	1.8	28
25	Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation. BMC Evolutionary Biology, 2014, 14, 76.	3.2	26
26	Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio Provide Variable Protection from Microbial Pathogens. Journal of Chemical Ecology, 2018, 44, 312-325.	1.8	26
27	Taxonomic distribution of defensive alkaloids in Nearctic oribatid mites (Acari, Oribatida). Experimental and Applied Acarology, 2015, 67, 317-333.	1.6	21
28	Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae). Scientific Reports, 2017, 7, 6647.	3.3	20
29	Frog or Fruit? The Importance of Color and Shape to Bird Predators in Clay Model Experiments. Copeia, 2015, 103, 58-63.	1.3	17
30	Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evolutionary Ecology, 2016, 30, 601-621.	1.2	17
31	Color Assortative Mating in a Mainland Population of the Poison Frog <i>Oophaga pumilio</i> . Ethology, 2016, 122, 851-858.	1.1	16
32	Roughing It: A Mantellid Poison Frog Shows Greater Alkaloid Diversity in Some Disturbed Habitats. Journal of Natural Products, 2010, 73, 322-330.	3.0	15
33	Synthesis and Biological Activities of the 3,5â€Ðisubstituted Indolizidine Poison Frog Alkaloid 239Q and Its Congeners. European Journal of Organic Chemistry, 2012, 2012, 7082-7092.	2.4	15
34	Escape behaviour of aposematic (<i>Oophaga pumilio</i>) and cryptic (<i>Craugastor</i> sp.) frogs in response to simulated predator approach. Journal of Tropical Ecology, 2017, 33, 165-169.	1.1	15
35	Use of wholeâ€body cryosectioning and desorption electrospray ionization mass spectrometry imaging to visualize alkaloid distribution in poison frogs. Journal of Mass Spectrometry, 2020, 55, e4520. –	1.6	14
36	Chemical defenses shift with the seasonal vertical migration of a Panamanian poison frog. Biotropica, 2021, 53, 28-37.	1.6	14

RALPH A SAPORITO

#	Article	IF	CITATIONS
37	Experimental evidence for maternal provisioning of alkaloid defenses in a dendrobatid frog. Toxicon, 2019, 161, 40-43.	1.6	13
38	Comment on Amézquita etÂal. (2017) "Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frogAllobates femoralis― Evolution; International Journal of Organic Evolution, 2018, 72, 1009-1014.	2.3	12
39	Transcriptomic Signatures of Experimental Alkaloid Consumption in a Poison Frog. Genes, 2019, 10, 733.	2.4	12
40	The palatability of Neotropical poison frogs in predatorâ€prey systems: do alkaloids make the difference?. Biotropica, 2017, 49, 23-26.	1.6	11
41	Individual and Geographic Variation of Skin Alkaloids in Three Swamp-Forest Species of Madagascan Poison Frogs (Mantella). Journal of Chemical Ecology, 2015, 41, 837-847.	1.8	10
42	Bufadienolide and alkaloid-based chemical defences in two different species of neotropical anurans are equally effective against the same arthropod predators. Journal of Tropical Ecology, 2016, 32, 165-169.	1.1	9
43	An Empirical Test Indicates Only Qualitatively Honest Aposematic Signaling Within a Population of Vertebrates. Journal of Herpetology, 2018, 52, 201-208.	0.5	9
44	Geographically separated orange and blue populations of the Amazonian poison frog Adelphobates galactonotus (Anura, Dendrobatidae) do not differ in alkaloid composition or palatability. Chemoecology, 2019, 29, 225-234.	1.1	9
45	Doseâ€dependent alkaloid sequestration and <i>N</i> â€methylation of decahydroquinoline in poison frogs. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2022, 337, 537-546.	1.9	8
46	Stereoselective Total Synthesis of (–)â€Batzellasides A, B, and C. European Journal of Organic Chemistry, 2013, 2013, 2841-2848.	2.4	6
47	The Chemistry of Some Dalodesmidean Millipedes from Tasmania (Diplopoda, Polydesmida). Journal of Natural Products, 2018, 81, 171-177.	3.0	6
48	Piperidine alkaloids from fire ants are not sequestered by the green and black poison frog (Dendrobates auratus). Chemoecology, 2021, 31, 391-396.	1.1	5
49	Total Synthesis of Decahydroquinoline Poison Frog Alkaloids ent-cis-195A and cis-211A. Molecules, 2021, 26, 7529.	3.8	5
50	Behavioural preference for low levels of UV-B radiation in two neotropical frog species from Costa Rica. Journal of Tropical Ecology, 2018, 34, 336-340.	1.1	4
51	Deoxybuzonamine Isomers from the Millipede <i>Brachycybe lecontii</i> (Platydesmida:) Tj ETQq1 1 0.784314 rg	gBT /Overlo	ock 10 Tf 50

⁵² Gosodesmine, a 7-Substituted Hexahydroindolizine from the Millipede <i>Gosodesmus claremontus</i>. Journal of Natural Products, 2020, 83, 2764-2768.

3.0 3