Herve Acloque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9460622/publications.pdf

Version: 2024-02-01

48 papers

12,190 citations

331670
21
h-index

265206 42 g-index

55 all docs 55 docs citations

55 times ranked 19651 citing authors

#	Article	IF	CITATIONS
1	Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 2009, 139, 871-890.	28.9	8,592
2	Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. Journal of Clinical Investigation, 2009, 119, 1438-1449.	8.2	1,155
3	Metastatic Colonization Requires the Repression of the Epithelial-Mesenchymal Transition Inducer Prrx1. Cancer Cell, 2012, 22, 709-724.	16.8	832
4	The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development (Cambridge), 2007, 134, 3549-3563.	2.5	175
5	Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nature Communications, 2015, 6, 7095.	12.8	137
6	Chapter 9 In Situ Hybridization Analysis of Chick Embryos in Wholeâ€Mount and Tissue Sections. Methods in Cell Biology, 2008, 87, 169-185.	1.1	117
7	Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biology, 2019, 17, 108.	3.8	109
8	Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nature Communications, 2020, 11, 3193.	12.8	103
9	The physiology and pathology of the EMT. EMBO Reports, 2008, 9, 322-326.	4.5	101
10	Reciprocal Repression between Sox3 and Snail Transcription Factors Defines Embryonic Territories at Gastrulation. Developmental Cell, 2011, 21, 546-558.	7.0	89
11	Characterization of a Yâ€specific duplication/insertion of the antiâ€Mullerian hormone type II receptor gene based on a chromosomeâ€scale genome assembly of yellow perch, <i>Perca flavescens</i> . Molecular Ecology Resources, 2020, 20, 531-543.	4.8	76
12	Snailla and Snaillb cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development (Cambridge), 2007, 134, 4073-4081.	2.5	68
13	<scp>GO</scp> â€xscp>FAANG meeting: a Gathering On Functional Annotation of <scp>An</scp> imal Genomes. Animal Genetics, 2016, 47, 528-533.	1.7	65
14	Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Developmental Biology, 2009, 330, 73-82.	2.0	62
15	Long noncoding RNA repertoire in chicken liver and adipose tissue. Genetics Selection Evolution, 2017, 49, 6.	3.0	59
16	Induced pluripotent stem cells derived from rabbits exhibit some characteristics of na \tilde{A} -ve pluripotency. Biology Open, 2013, 2, 613-628.	1.2	50
17	Identification of a new gene family specifically expressed in chicken embryonic stem cells and early embryo. Mechanisms of Development, 2001, 103, 79-91.	1.7	41
18	RNA-Seq Data for Reliable SNP Detection and Genotype Calling: Interest for Coding Variant Characterization and Cis-Regulation Analysis by Allele-Specific Expression in Livestock Species. Frontiers in Genetics, 2021, 12, 655707.	2.3	30

#	Article	IF	Citations
19	Snail genes at the crossroads of symmetric and asymmetric processes in the developing mesoderm. EMBO Reports, 2007, 8, 104-109.	4.5	28
20	Sperm DNA Methylation Analysis in Swine Reveals Conserved and Species-Specific Methylation Patterns and Highlights an Altered Methylation at the GNAS Locus in Infertile Boars 1. Biology of Reproduction, 2014, 91, 137.	2.7	27
21	Meiotic Recombination Analyses of Individual Chromosomes in Male Domestic Pigs (Sus scrofa) Tj ETQq1 1 0.78	4314 rgBT 2.5	Overlock II
22	<i>In vitro</i> exposure to CPF affects bovine sperm epigenetic gene methylation pattern and the ability of sperm to support fertilization and embryo development. Environmental and Molecular Mutagenesis, 2019, 60, 85-95.	2.2	24
23	An integrative atlas of chicken long non-coding genes and their annotations across 25 tissues. Scientific Reports, 2020, 10, 20457.	3.3	20
24	BMAL1 Knockdown Leans Epithelial–Mesenchymal Balance toward Epithelial Properties and Decreases the Chemoresistance of Colon Carcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 5247.	4.1	19
25	Preimplantation development in ungulates: a â€~ménage à quatre' scenario. Reproduction, 2020, 159, R151-R172.	2.6	19
26	A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits. Stem Cell Reports, 2016, 7, 383-398.	4.8	17
27	Role of circadian rhythm disorders on EMT and tumour–immune interactions in endocrine-related cancers. Endocrine-Related Cancer, 2021, 28, R67-R80.	3.1	17
28	<i>Snail2</i> and <i>Zeb2</i> repress <i>P-Cadherin</i> to define embryonic territories in the chick embryo. Development (Cambridge), 2017, 144, 649-656.	2.5	16
29	Sperm Nuclear Architecture Is Locally Modified in Presence of a Robertsonian Translocation t(13;17). PLoS ONE, 2013, 8, e78005.	2.5	15
30	Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells. Scientific Reports, 2016, 6, 27059.	3.3	14
31	Transcription factor cCP2 controls gene expression in chicken embryonic stem cells. Nucleic Acids Research, 2004, 32, 2259-2271.	14.5	13
32	Astacinâ€like metalloâ€endopeptidase is dynamically expressed in embryonic stem cells and embryonic epithelium during morphogenesis. Developmental Dynamics, 2012, 241, 574-582.	1.8	10
33	The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue. Retrovirology, 2012, 9, 21.	2.0	9
34	Meiotic pairing and gene expression disturbance in germ cells from an infertile boar with a balanced reciprocal autosome-autosome translocation. Chromosome Research, 2016, 24, 511-527.	2.2	8
35	Identification of valid reference genes for circadian gene-expression studies in human mammary epithelial cells. Chronobiology International, 2018, 35, 1689-1701.	2.0	7
36	Mutual exclusion of transcription factors and cell behaviour in the definition of vertebrate embryonic territories. Current Opinion in Genetics and Development, 2012, 22, 308-314.	3.3	5

#	Article	IF	CITATIONS
37	Subcellular Localization of ENS-1/ERNI in Chick Embryonic Stem Cells. PLoS ONE, 2014, 9, e92039.	2.5	4
38	Modifications ciblées des génomes : apports et impacts pour les espÃ"ces d'élevage. INRA Productions Animales, 2018, 30, 3-18.	0.5	1
39	330 DERIVATION OF PORCINE INDUCED PLURIPOTENT STEM CELLS FROM FIBROBLASTS OF A TRANSLOCATED AZOOSPERMIC BOAR. Reproduction, Fertility and Development, 2015, 27, 254.	0.4	1
40	Inducing Sequential Cycles of Epithelial-Mesenchymal and Mesenchymal-Epithelial Transitions in Mammary Epithelial Cells. Methods in Molecular Biology, 2021, 2179, 341-351.	0.9	1
41	Tissue Resources for the Functional Annotation of Animal Genomes. Frontiers in Genetics, 2021, 12, 666265.	2.3	1
42	32 Functional annotation of livestock genomes: chromatin structure and regulation of gene expression. Journal of Animal Science, 2019, 97, 15-16.	0.5	0
43	Single-Cell Transcriptome in Chronic Myeloid Leukemia: Pseudotime Analysis Reveals Evidence of Embryonic and Transitional Stem Cell States. Experimental Hematology, 2020, 85, 47-56.e2.	0.4	0
44	Derivation of porcine iPS-like cells from fibroblast of a translocated azoospermic boar. Reproduction Abstracts, 0 , , .	0.0	0
45	DNA methylation analysis in sperm from boars exhibiting normal and altered spermograms. Reproduction Abstracts, 0, , .	0.0	0
46	Blast Crisis in a Dish: Generation of a Blast Crisis Model in Chronic Myeloid Leukemia (CML) Using Patient-Specific Induced Pluripotent Stem Cells (iPSC). Blood, 2016, 128, 933-933.	1.4	0
47	Single Cell Transcriptome in Chronic Myeloid Leukemia (CML): Pseudotime Analysis Reveals a Rare Population with Embryonic Stem Cell Features and Druggable Intricated Transitional Stem Cell States. Blood, 2018, 132, 934-934.	1.4	O
48	Modifications ciblées des génomes : apports et impacts potentiels des nouvelles technologies pour les espèces aviaires. Bulletin De L'Academie Veterinaire De France, 2020, , .	0.0	0