Shaodong Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9460231/publications.pdf Version: 2024-02-01

SHAODONC DAL

#	Article	IF	CITATIONS
1	Structure of Rift Valley Fever Virus RNA-Dependent RNA Polymerase. Journal of Virology, 2022, 96, JVI0171321.	3.4	13
2	Structural insights into the interactions and epigenetic functions of human nucleic acid repair protein ALKBH6. Journal of Biological Chemistry, 2022, 298, 101671.	3.4	10
3	The T Cell Repertoires from Nickel Sensitized Joint Implant Failure Patients. International Journal of Molecular Sciences, 2021, 22, 2428.	4.1	2
4	Structures suggest an approach for converting weak self-peptide tumor antigens into superagonists for CD8 T cells in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2100588118.	7.1	9
5	CD4+ T cells in the lungs of acute sarcoidosis patients recognize an <i>Aspergillus nidulans</i> epitope. Journal of Experimental Medicine, 2021, 218, .	8.5	33
6	A monoclonal antibody with broad specificity for the ligands of insulin B:9-23 reactive T cells prevents spontaneous type 1 diabetes in mice. MAbs, 2020, 12, 1836714.	5.2	5
7	HLA-DR53 (DRB4â^—01) associates with nickel sensitization. Annals of Allergy, Asthma and Immunology, 2020, 125, 614-616.	1.0	2
8	Crystal structures of REF6 and its complex with DNA reveal diverse recognition mechanisms. Cell Discovery, 2020, 6, 17.	6.7	18
9	How C-terminal additions to insulin B-chain fragments create superagonists for T cells in mouse and human type 1 diabetes. Science Immunology, 2019, 4, .	11.9	38
10	C-terminal modification of the insulin B:11–23 peptide creates superagonists in mouse and human type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 162-167.	7.1	60
11	DksA–DnaJ redox interactions provide a signal for the activation of bacterial RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11780-E11789.	7.1	39
12	Hydrogen bonds are a primary driving force for <i>de novo</i> protein folding. Corrigendum. Acta Crystallographica Section D: Structural Biology, 2018, 74, 380-380.	2.3	1
13	Using DR52c/Ni2+ mimotope tetramers to detect Ni2+ reactive CD4+ T cells in patients with joint replacement failure. Toxicology and Applied Pharmacology, 2017, 331, 69-75.	2.8	3
14	Hydrogen bonds are a primary driving force for <i>de novo</i> protein folding. Acta Crystallographica Section D: Structural Biology, 2017, 73, 955-969.	2.3	9
15	Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation. Journal of Immunology, 2016, 196, 22-27.	0.8	48
16	N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13318-13323.	7.1	40
17	Structural Basis of Chronic Beryllium Disease: Linking Allergic Hypersensitivity and Autoimmunity. Cell, 2014, 158, 132-142.	28.9	101
18	T cell recognition of beryllium. Current Opinion in Immunology, 2013, 25, 775-780.	5.5	18

Shaodong Dai

#	Article	IF	CITATIONS
19	T-cell receptor (TCR) interaction with peptides that mimic nickel offers insight into nickel contact allergy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18517-18522.	7.1	43
20	A Single T Cell Receptor Bound to Major Histocompatibility Complex Class I and Class II Glycoproteins Reveals Switchable TCR Conformers. Immunity, 2011, 35, 23-33.	14.3	80
21	Crystal structure of HLA-DP2 and implications for chronic beryllium disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7425-7430.	7.1	103
22	Crossreactive T Cells Spotlight the Germline Rules for $\hat{I}\pm\hat{I}^2$ T Cell-Receptor Interactions with MHC Molecules. Immunity, 2008, 28, 324-334.	14.3	171
23	Evolutionarily Conserved Amino Acids That Control TCR-MHC Interaction. Annual Review of Immunology, 2008, 26, 171-203.	21.8	261
24	The structure of HLA-DR52c: Comparison to other HLA-DRB3 alleles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11893-11897.	7.1	28