## Galit Lahav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9459475/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genetics, 2004, 36, 147-150.                                                                                    | 21.4 | 900       |
| 2  | Encoding and Decoding Cellular Information through Signaling Dynamics. Cell, 2013, 152, 945-956.                                                                                   | 28.9 | 725       |
| 3  | The multiple mechanisms that regulate p53 activity and cell fate. Nature Reviews Molecular Cell<br>Biology, 2019, 20, 199-210.                                                     | 37.0 | 711       |
| 4  | p53 Dynamics Control Cell Fate. Science, 2012, 336, 1440-1444.                                                                                                                     | 12.6 | 655       |
| 5  | Oscillations and variability in the p53 system. Molecular Systems Biology, 2006, 2, 2006.0033.                                                                                     | 7.2  | 539       |
| 6  | Recurrent Initiation: A Mechanism for Triggering p53 Pulses in Response to DNA Damage. Molecular<br>Cell, 2008, 30, 277-289.                                                       | 9.7  | 383       |
| 7  | Quantitative Live Cell Imaging Reveals a Gradual Shift between DNA Repair Mechanisms and a Maximal<br>Use of HR in Mid S Phase. Molecular Cell, 2012, 47, 320-329.                 | 9.7  | 316       |
| 8  | Stimulusâ€dependent dynamics of p53 in single cells. Molecular Systems Biology, 2011, 7, 488.                                                                                      | 7.2  | 283       |
| 9  | Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature, 2013, 494, 480-483.                                                                 | 27.8 | 275       |
| 10 | Cell-to-Cell Variation in p53 Dynamics Leads to Fractional Killing. Cell, 2016, 165, 631-642.                                                                                      | 28.9 | 253       |
| 11 | Cycling cancer persister cells arise from lineages with distinct programs. Nature, 2021, 596, 576-582.                                                                             | 27.8 | 236       |
| 12 | Basal Dynamics of p53 Reveal Transcriptionally Attenuated Pulses in Cycling Cells. Cell, 2010, 142, 89-100.                                                                        | 28.9 | 223       |
| 13 | The ups and downs of p53: understanding protein dynamics in single cells. Nature Reviews Cancer, 2009, 9, 371-377.                                                                 | 28.4 | 208       |
| 14 | High Mitochondrial Priming Sensitizes hESCs to DNA-Damage-Induced Apoptosis. Cell Stem Cell, 2013,<br>13, 483-491.                                                                 | 11.1 | 136       |
| 15 | Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins. Nature Methods, 2006, 3, 525-531.                                      | 19.0 | 125       |
| 16 | Fluctuations in p53 Signaling Allow Escape from Cell-Cycle Arrest. Molecular Cell, 2018, 71, 581-591.e5.                                                                           | 9.7  | 108       |
| 17 | Activation and control of p53 tetramerization in individual living cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15497-15501. | 7.1  | 106       |
| 18 | Dynamics of CDKN1A in Single Cells Defined by an Endogenous Fluorescent Tagging Toolkit. Cell<br>Reports, 2016, 14, 1800-1811.                                                     | 6.4  | 85        |

Galit Lahav

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | p53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics. Nature<br>Structural and Molecular Biology, 2017, 24, 840-847.             | 8.2  | 83        |
| 20 | p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM. Science Signaling, 2017, 10, . | 3.6  | 78        |
| 21 | We are all individuals: causes and consequences of non-genetic heterogeneity in mammalian cells.<br>Current Opinion in Genetics and Development, 2011, 21, 753-758.     | 3.3  | 66        |
| 22 | Stem cells: balancing resistance and sensitivity to DNA damage. Trends in Cell Biology, 2014, 24, 268-274.                                                              | 7.9  | 66        |
| 23 | The p53 response in single cells is linearly correlated to the number of DNA breaks without a distinct threshold. BMC Biology, 2013, 11, 114.                           | 3.8  | 65        |
| 24 | Schedule-dependent interaction between anticancer treatments. Science, 2016, 351, 1204-1208.                                                                            | 12.6 | 62        |
| 25 | Oscillations by the p53-Mdm2 Feedback Loop. Advances in Experimental Medicine and Biology, 2008, 641, 28-38.                                                            | 1.6  | 61        |
| 26 | The Strength of Indecisiveness: Oscillatory Behavior for Better Cell Fate Determination. Science Signaling, 2004, 2004, pe55-pe55.                                      | 3.6  | 53        |
| 27 | Hidden heterogeneity and circadian-controlled cell fate inferred from single cell lineages. Nature<br>Communications, 2018, 9, 5372.                                    | 12.8 | 48        |
| 28 | Two is better than one; toward a rational design of combinatorial therapy. Current Opinion in<br>Structural Biology, 2016, 41, 145-150.                                 | 5.7  | 47        |
| 29 | Conservation and Divergence of p53 Oscillation Dynamics across Species. Cell Systems, 2017, 5, 410-417.e4.                                                              | 6.2  | 43        |
| 30 | A Switch in p53 Dynamics Marks Cells That Escape from DSB-Induced Cell Cycle Arrest. Cell Reports, 2020, 32, 107995.                                                    | 6.4  | 39        |
| 31 | The effect of dust storm particles on single human lung cancer cells. Environmental Research, 2020,<br>181, 108891.                                                     | 7.5  | 37        |
| 32 | p53 dynamics vary between tissues and are linked with radiation sensitivity. Nature Communications, 2021, 12, 898.                                                      | 12.8 | 32        |
| 33 | Constant rate of p53 tetramerization in response to <scp>DNA</scp> damage controls the p53 response. Molecular Systems Biology, 2014, 10, 753.                          | 7.2  | 31        |
| 34 | The effects of proliferation status and cell cycle phase on the responses of single cells to chemotherapy. Molecular Biology of the Cell, 2020, 31, 845-857.            | 2.1  | 29        |
| 35 | A probabilistic approach to joint cell tracking and segmentation in high-throughput microscopy videos. Medical Image Analysis, 2018, 47, 140-152.                       | 11.6 | 28        |
| 36 | Quantifying the Central Dogma in the p53 Pathway in Live Single Cells. Cell Systems, 2020, 10,<br>495-505.e4.                                                           | 6.2  | 28        |

Galit Lahav

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Single-cell analysis of circadian dynamics in tissue explants. Molecular Biology of the Cell, 2015, 26, 3940-3945.                                                    | 2.1  | 18        |
| 38 | Leveraging and coping with uncertainty in the response of individual cells to therapy. Current<br>Opinion in Biotechnology, 2018, 51, 109-115.                        | 6.6  | 17        |
| 39 | Dynamics of the DNA damage response: insights from live-cell imaging. Briefings in Functional Genomics, 2013, 12, 109-117.                                            | 2.7  | 16        |
| 40 | Inferring Leading Interactions in the p53/Mdm2/Mdmx Circuit through Live-Cell Imaging and Modeling.<br>Cell Systems, 2019, 9, 548-558.e5.                             | 6.2  | 16        |
| 41 | Timeâ€series transcriptomics and proteomics reveal alternative modes to decode p53 oscillations.<br>Molecular Systems Biology, 2022, 18, e10588.                      | 7.2  | 16        |
| 42 | Identification of universal and cell-type specific p53 DNA binding. BMC Molecular and Cell Biology, 2020, 21, 5.                                                      | 2.0  | 14        |
| 43 | p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression. Oncotarget, 2016, 7,<br>52643-52660.                                                  | 1.8  | 11        |
| 44 | Principles, mechanisms and functions of entrainment in biological oscillators. Interface Focus, 2022, 12, 20210088.                                                   | 3.0  | 11        |
| 45 | The puzzling interplay between p53 and Sp1. Aging, 2017, 9, 1355-1356.                                                                                                | 3.1  | 10        |
| 46 | Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy. Bioinformatics, 2018, 35, 2644-2653.                                               | 4.1  | 7         |
| 47 | How To Survive and Thrive in the Mother-Mentor Marathon. Molecular Cell, 2010, 38, 477-480.                                                                           | 9.7  | 6         |
| 48 | Connecting Timescales in Biology: Can Early Dynamical Measurements Predict Long-Term Outcomes?.<br>Trends in Cancer, 2021, 7, 301-308.                                | 7.4  | 4         |
| 49 | Preparing macrophages for the future. Science, 2021, 372, 1263-1264.                                                                                                  | 12.6 | 3         |
| 50 | Reading oscillatory instructions: How cells achieve time-dependent responses to oscillating transcription factors. Current Opinion in Cell Biology, 2022, 77, 102099. | 5.4  | 3         |
| 51 | Louder for longer: Myc amplifies gene expression by extended transcriptional bursting. Cell Reports, 2022, 38, 110470.                                                | 6.4  | 2         |
| 52 | The Single-Cell Yin and Yang of Live Imaging and Transcriptomics. Cell Systems, 2017, 4, 375-377.                                                                     | 6.2  | 1         |
| 53 | Integrating genomic information and signaling dynamics for efficient cancer therapy. Current<br>Opinion in Systems Biology, 2017, 1, 38-43.                           | 2.6  | 1         |
| 54 | Abstract 2159: Oscillating p53 temporal dynamics enable proliferative recovery of cells following DNA damage. , 2021, , .                                             |      | 0         |