Steven C Pennings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9459049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the United States of America, 2005, 102, 4387-4392.	7.1	879
2	Forecasting the effects of accelerated seaâ€level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 2009, 7, 73-78.	4.0	614
3	PHENOTYPIC PLASTICITY AND INTERACTIONS AMONG PLANTS. Ecology, 2003, 84, 1115-1128.	3.2	512
4	Salt Marsh Plant Zonation: The Relative Importance of Competition and Physical Factors. Ecology, 1992, 73, 681-690.	3.2	490
5	Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology, 2005, 93, 159-167.	4.0	429
6	Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 2007, 10, 596-607.	6.4	293
7	LINKING BIOGEOGRAPHY AND COMMUNITY ECOLOGY: LATITUDINAL VARIATION IN PLANT–HERBIVORE INTERACTION STRENGTH. Ecology, 2005, 86, 2310-2319.	3.2	215
8	Economic development and coastal ecosystem change in China. Scientific Reports, 2014, 4, 5995.	3.3	210
9	Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia, 2002, 132, 221-230.	2.0	204
10	THE ADVANTAGES OF CLONAL INTEGRATION UNDER DIFFERENT ECOLOGICAL CONDITIONS: A COMMUNITY-WIDE TEST. Ecology, 2000, 81, 709-716.	3.2	167
11	Latitudinal variation in herbivore pressure in Atlantic Coast salt marshes. Ecology, 2009, 90, 183-195.	3.2	162
12	Parasitic plants: parallels and contrasts with herbivores. Oecologia, 2002, 131, 479-489.	2.0	158
13	GEOGRAPHIC VARIATION IN POSITIVE AND NEGATIVE INTERACTIONS AMONG SALT MARSH PLANTS. Ecology, 2003, 84, 1527-1538.	3.2	151
14	Impact of a Parasitic Plant on the Structure and Dynamics of Salt Marsh Vegetation. Ecology, 1996, 77, 1410-1419.	3.2	144
15	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
16	Selectivity and Growth of the Generalist Herbivore Dolabella Auricularia Feeding Upon Complementary Resources. Ecology, 1993, 74, 879-890.	3.2	138
17	FEEDING PREFERENCES OF A GENERALIST SALT-MARSH CRAB: RELATIVE IMPORTANCE OF MULTIPLE PLANT TRAITS. Ecology, 1998, 79, 1968-1979.	3.2	127
18	LATITUDINAL DIFFERENCES IN PLANT PALATABILITY IN ATLANTIC COAST SALT MARSHES. Ecology, 2001, 82, 1344-1359.	3.2	122

#	Article	IF	CITATIONS
19	Effect of Plant Toughness, Calcification, and Chemistry on Herbivory by Dolabella Auricularia. Ecology, 1992, 73, 1606-1619.	3.2	110
20	Do individual plant species show predictable responses to nitrogen addition across multiple experiments?. Oikos, 2005, 110, 547-555.	2.7	110
21	Feeding preferences of supralittoral isopods and amphipods. Canadian Journal of Zoology, 2000, 78, 1918-1929.	1.0	97
22	Habitat range and phenotypic variation in salt marsh plants. Plant Ecology, 2005, 176, 263-273.	1.6	93
23	Effects of wrack burial in salt-stressed habitats: Batis maritima in a southwest Atlantic salt marsh. Ecography, 1998, 21, 630-638.	4.5	92
24	Facilitation May Buffer Competitive Effects: Indirect and Diffuse Interactions among Salt Marsh Plants. American Naturalist, 2000, 156, 416-424.	2.1	92
25	Ecosystem Functions of Tidal Fresh, Brackish, and Salt Marshes on the Georgia Coast. Estuaries and Coasts, 2010, 33, 161-169.	2.2	91
26	Diet-derived chemical defenses in the sea hare Stylocheilus longicauda (Quoy et Gaimard 1824). Journal of Experimental Marine Biology and Ecology, 1991, 151, 227-243.	1.5	90
27	Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition. Oecologia, 2012, 169, 1053-1062.	2.0	90
28	RANK CLOCKS AND PLANT COMMUNITY DYNAMICS. Ecology, 2008, 89, 3534-3541.	3.2	89
29	Latitudinal Differences in Plant Palatability in Atlantic Coast Salt Marshes. Ecology, 2001, 82, 1344.	3.2	89
30	Diet choice in an omnivorous salt-marsh crab: different food types, body size, and habitat complexity. Journal of Experimental Marine Biology and Ecology, 2003, 292, 103-116.	1.5	85
31	Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill. PLoS ONE, 2012, 7, e32735.	2.5	84
32	Geographical variation in vegetative growth and sexual reproduction of the invasive <i>Spartina alterniflora</i> in China. Journal of Ecology, 2016, 104, 173-181.	4.0	83
33	LATITUDINAL VARIATION IN PALATABILITY OF SALT-MARSH PLANTS: WHICH TRAITS ARE RESPONSIBLE?. Ecology, 2002, 83, 3369-3381.	3.2	79
34	ls Diet Quality an Overlooked Mechanism for Bergmann's Rule?. American Naturalist, 2010, 175, 269-276.	2.1	78
35	Biotic interactions mediate the expansion of black mangrove (<i><scp>A</scp>vicennia germinans</i>) into salt marshes under climate change. Global Change Biology, 2013, 19, 2765-2774.	9.5	78
36	Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology, 2017, 98, 762-772.	3.2	74

#	Article	IF	CITATIONS
37	LATITUDINAL VARIATION IN PALATABILITY OF SALT-MARSH PLANTS: ARE DIFFERENCES CONSTITUTIVE?. Ecology, 2005, 86, 1571-1579.	3.2	73
38	Fiddler crab–vegetation interactions in hypersaline habitats. Journal of Experimental Marine Biology and Ecology, 1998, 225, 53-68.	1.5	67
39	Effects of sponge secondary metabolites in different diets on feeding by three groups of consumers. Journal of Experimental Marine Biology and Ecology, 1994, 180, 137-149.	1.5	66
40	Impact of a parasitic plant on the zonation of two salt marsh perennials. Oecologia, 1998, 114, 100-105.	2.0	65
41	Variation in microplastics composition at small spatial and temporal scales in a tidal flat of the Yangtze Estuary, China. Science of the Total Environment, 2020, 699, 134252.	8.0	64
42	Mechanisms mediating plant distributions across estuarine landscapes in a low″atitude tidal estuary. Ecology, 2012, 93, 90-100.	3.2	62
43	Salt marsh litter and detritivores: A closer look at redundancy. Estuaries and Coasts, 2004, 27, 753-769.	1.7	58
44	Species-specific patterns of litter processing by terrestrial isopods (Isopoda: Oniscidea) in high intertidal salt marshes and coastal forests. Functional Ecology, 2002, 16, 596-607.	3.6	57
45	Secondary chemistry does not limit dietary range of the specialist sea hare Stylocheilus longicauda (Quoy et Gaimard 1824). Journal of Experimental Marine Biology and Ecology, 1993, 174, 97-113.	1.5	56
46	Nutrient effects on the composition of salt marsh plant communities along the Southern Atlantic and gulf coasts of the United States. Estuaries and Coasts, 2002, 25, 1164-1173.	1.7	55
47	Impacts of the <i>Deepwater Horizon</i> Oil Spill on Salt Marsh Periwinkles (<i>Littoraria) Tj ETQq1 1 0.784314</i>	4 rg <u>βT /</u> Οv	verlock 10 Tf 3
48	Latitudinal variation in plant–herbivore interactions in European salt marshes. Oikos, 2007, 116, 543-549.	2.7	52
49	Multiple factors promoting narrow host range in the sea hare, Aplysia californica. Oecologia, 1990, 82, 192-200.	2.0	51
50	Ecosystem engineers drive creek formation in salt marshes. Ecology, 2017, 98, 162-174.	3.2	51
51	Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Marine Biology, 2002, 140, 1207-1213.	1.5	49
52	Climate Drivers of Spartina alterniflora Saltmarsh Production in Georgia, USA. Ecosystems, 2014, 17, 473-484.	3.4	49
53	Title is missing!. Journal of Chemical Ecology, 1999, 25, 735-755.	1.8	45
54	Impact of Fertilization on a Salt Marsh Food Web in Georgia. Estuaries and Coasts, 2008, 31, 313-325.	2.2	45

#	Article	IF	CITATIONS
55	Deepwater Horizon Oil Spill Impacts on Salt Marsh Fiddler Crabs (Uca spp.). Estuaries and Coasts, 2016, 39, 1154-1163.	2.2	44
56	Provenanceâ€byâ€environment interaction of reproductive traits in the invasion of <i>Spartina alterniflora</i> in China. Ecology, 2017, 98, 1591-1599.	3.2	44
57	Contrasting plant adaptation strategies to latitude in the native and invasive range of <i>Spartina alterniflora</i> . New Phytologist, 2020, 226, 623-634.	7.3	43
58	Size-related shifts in herbivory: specialization in the sea hare Aplysia californica Cooper. Journal of Experimental Marine Biology and Ecology, 1990, 142, 43-61.	1.5	41
59	Latitudinal variation in resistance and tolerance to herbivory of a salt marsh shrub. Ecography, 2014, 37, 763-769.	4.5	41
60	Effects of Oil Spills on Terrestrial Arthropods in Coastal Wetlands. BioScience, 2014, 64, 789-795.	4.9	41
61	Seeking salt: herbivorous prairie insects can be coâ€limited by macronutrients and sodium. Ecology Letters, 2018, 21, 1467-1476.	6.4	41
62	Supporting <i>Spartina</i> : Interdisciplinary perspective shows <i>Spartina</i> as a distinct solid genus. Ecology, 2019, 100, e02863.	3.2	39
63	Zonation of shrubs in western Atlantic salt marshes. Oecologia, 2001, 126, 587-594.	2.0	38
64	Environmental gradients and herbivore feeding preferences in coastal salt marshes. Oecologia, 2004, 140, 591-600.	2.0	38
65	Reproductive behavior of Aplysia californica Cooper: diel patterns, sexual roles and mating aggregations. Journal of Experimental Marine Biology and Ecology, 1991, 149, 249-266.	1.5	37
66	Landscape Estimates of Habitat Types, Plant Biomass, and Invertebrate Densities in a Georgia Salt Marsh. Oceanography, 2013, 26, 88-97.	1.0	37
67	Biotic homogenization of wetland nematode communities by exotic <i>Spartina alterniflora</i> in China. Ecology, 2019, 100, e02596.	3.2	37
68	Mapping salt marsh soil properties using imaging spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148, 221-234.	11.1	37
69	Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands. Ecology, 2020, 101, e02916.	3.2	35
70	Interspecific variation in chemical defenses in the sea hares (Opisthobranchia: Anaspidea). Journal of Experimental Marine Biology and Ecology, 1994, 180, 203-219.	1.5	33
71	Chemical defenses of the tropical, benthic marine cyanobacterium <i>Hormothamnion enteromorphoides</i> : Diverse consumers and synergisms. Limnology and Oceanography, 1997, 42, 911-917.	3.1	33
72	Latitudinal variation in top-down and bottom-up control of a salt marsh food web. Ecology, 2011, 92, 276-281.	3.2	33

#	Article	IF	CITATIONS
73	A Research Framework to Integrate Cross-Ecosystem Responses to Tropical Cyclones. BioScience, 2020, 70, 477-489.	4.9	33
74	CONSEQUENCES OF OMNIVORY FOR TROPHIC INTERACTIONS ON A SALT MARSH SHRUB. Ecology, 2008, 89, 1714-1722.	3.2	30
75	Effects of epiphytic lichens on host preference of the vascular epiphyte Tillandsia usneoides. Oikos, 2001, 94, 433-441.	2.7	29
76	Patterns of Plant Diversity in Georgia and Texas Salt Marshes. Estuaries and Coasts, 2008, 31, 673-681.	2.2	28
77	Patterns of trait convergence and divergence among native and exotic species in herbaceous plant communities are not modified by nitrogen enrichment. Journal of Ecology, 2011, 99, 1327-1338.	4.0	27
78	Relative influence of deterministic processes on structuring marsh plant communities varies across an abiotic gradient. Oikos, 2014, 123, 173-178.	2.7	27
79	Resistance to Hurricane Effects Varies Among Wetland Vegetation Types in the Marsh–Mangrove Ecotone. Estuaries and Coasts, 2020, 43, 960-970.	2.2	27
80	Climate and geographic adaptation drive latitudinal clines in biomass of a widespread saltmarsh plant in its native and introduced ranges. Limnology and Oceanography, 2020, 65, 1399-1409.	3.1	26
81	Hemolymph ion composition and volume changes in the supralittoral isopod Ligia pallasii Brandt, during molt. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2000, 170, 329-336.	1.5	24
82	Like herbivores, parasitic plants are limited by host nitrogen content. Plant Ecology, 2008, 196, 245-250.	1.6	23
83	Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia, 2015, 178, 999-1015.	2.0	23
84	Effects of secondary metabolites and CaCO3 on feeding by surgeonfishes and parrotfishes:within-plant comparisons. Marine Ecology - Progress Series, 1996, 134, 49-58.	1.9	23
85	Geographic variation in salt marsh structure and function. Oecologia, 2012, 170, 777-787.	2.0	22
86	Disturbance in Georgia salt marshes: variation across space and time. Ecosphere, 2016, 7, e01487.	2.2	22
87	Spatial and temporal variation in recruitment of Aplysia californica Cooper: patterns, mechanisms and consequences. Journal of Experimental Marine Biology and Ecology, 1991, 146, 253-274.	1.5	21
88	A test of novel function(s) for the ink of sea hares. Journal of Experimental Marine Biology and Ecology, 1999, 234, 185-197.	1.5	21
89	The Effect of Mercury and PCBs on Organisms from Lower Trophic Levels of a Georgia Salt Marsh. Archives of Environmental Contamination and Toxicology, 2001, 40, 10-17.	4.1	21
90	Vulnerability of sea hares to fish predators: importance of diet and fish species. Coral Reefs, 2001, 20, 320-324.	2.2	21

#	Article	IF	CITATIONS
91	Grasshopper (Orthoptera: Tettigoniidae) Species Composition and Size Across Latitude in Atlantic Coast Salt Marshes. Estuaries and Coasts, 2008, 31, 335-343.	2.2	20
92	SPECIES RESPONSES TO NITROGEN FERTILIZATION IN HERBACEOUS PLANT COMMUNITIES, AND ASSOCIATED SPECIES TRAITSEcological ArchivesE089-070. Ecology, 2008, 89, 1175-1175.	3.2	20
93	The big picture of marsh loss. Nature, 2012, 490, 352-353.	27.8	20
94	Timing of disturbance affects biomass and flowering of a saltmarsh plant and attack by stemâ€boring herbivores. Ecosphere, 2017, 8, e01675.	2.2	20
95	Using a marsh organ to predict future plant communities in a Chinese estuary invaded by an exotic grass and mangrove. Limnology and Oceanography, 2018, 63, 2595-2605.	3.1	20
96	Distribution of mycosporine-like amino acids in the sea hare Aplysia dactylomela: effect of diet on amounts and types sequestered over time in tissues and spawn. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 2000, 126, 91-104.	0.5	18
97	Spatial Variation in Process and Pattern in Salt Marsh Plant Communities in Eastern North America. , 2002, , 39-57.		18
98	A comparison of coastal habitat restoration projects in China and the United States. Scientific Reports, 2019, 9, 14388.	3.3	18
99	Testing for Synergisms between Chemical and Mineral DefensesA Comment. Ecology, 1996, 77, 1948-1950.	3.2	17
100	Decomposition of Leaf Litter in a U.S. Saltmarsh is Driven by Dominant Species, Not Species Complementarity. Wetlands, 2013, 33, 83-89.	1.5	17
101	Preference and Performance in Plant–Herbivore Interactions across Latitude–A Study in U.S. Atlantic Salt Marshes. PLoS ONE, 2013, 8, e59829.	2.5	17
102	Effects of mangrove cover on coastal erosion during a hurricane in Texas, USA. Ecology, 2021, 102, e03309.	3.2	17
103	Effects of an Omnivorous Katydid, Salinity, and Nutrients on a Planthopper-Spartina Food Web. Estuaries and Coasts, 2012, 35, 475-485.	2.2	16
104	Microspatial Differences in Soil Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt Marshes. Ecosystems, 2020, 23, 498-510.	3.4	15
105	Constraints on host use by a parasitic plant. Oecologia, 2010, 164, 177-184.	2.0	14
106	Multiscale Diversity in the Marshes of the Georgia Coastal Ecosystems LTER. Estuaries and Coasts, 2010, 33, 865-877.	2.2	14
107	Chronic but not acute saltwater intrusion leads to large release of inorganic N in a tidal freshwater marsh. Science of the Total Environment, 2019, 695, 133779.	8.0	13
108	Swimming in the sea hare Aplysia brasiliana: Cost of transport, parapodial morphometry, and swimming behavior. Journal of Experimental Marine Biology and Ecology, 2006, 328, 76-86.	1.5	12

#	Article	IF	CITATIONS
109	Marine ecoregion and <i><scp>D</scp>eepwater <scp>H</scp>orizon</i> oil spill affect recruitment and population structure of a salt marsh snail. Ecosphere, 2016, 7, e01588.	2.2	12
110	Woody structure facilitates invasion of woody plants by providing perches for birds. Ecology and Evolution, 2017, 7, 8032-8039.	1.9	12
111	Selfâ€ŧhinning and sizeâ€dependent flowering of the grass <i>Spartina alterniflora</i> across space and time. Functional Ecology, 2019, 33, 1830-1841.	3.6	12
112	Impact of tidal inundation on the net ecosystem exchange in daytime conditions in a salt marsh. Agricultural and Forest Meteorology, 2020, 294, 108133.	4.8	12
113	Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant. Oecologia, 2012, 170, 789-798.	2.0	11
114	Dynamic Management of Water Storage for Flood Control in a Wetland System: A Case Study in Texas. Water (Switzerland), 2018, 10, 325.	2.7	11
115	Effects of mangrove encroachment on tidal wetland plant, nekton, and bird communities in the Western Gulf of Mexico. Estuarine, Coastal and Shelf Science, 2021, 248, 106767.	2.1	11
116	Predators mediate above―vs. belowground herbivory in a salt marsh crab. Ecosphere, 2018, 9, e02107.	2.2	10
117	Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge. Wetlands, 2018, 38, 885-891.	1.5	10
118	Climate drivers of <i>Zizaniopsis miliacea</i> biomass in a Georgia, U.S.A. tidal fresh marsh. Limnology and Oceanography, 2018, 63, 2266-2276.	3.1	10
119	Response and Recovery of Low-Salinity Marsh Plant Communities to Presses and Pulses of Elevated Salinity. Estuaries and Coasts, 2019, 42, 708-718.	2.2	10
120	Plasticity and selection drive humpâ€shaped latitudinal patterns of flowering phenology in an invasive intertidal plant. Ecology, 2021, 102, e03311.	3.2	10
121	Assessing salt marsh health: A test of the utility of five potential indicators. Wetlands, 2002, 22, 406-414.	1.5	9
122	Effects of Small-Scale Armoring and Residential Development on the Salt Marsh-Upland Ecotone. Estuaries and Coasts, 2018, 41, 54-67.	2.2	9
123	Consistent pattern of higher lability of leaves from high latitudes for both native <i>Phragmites australis</i> and exotic <i>Spartina alterniflora</i> . Functional Ecology, 2021, 35, 2084-2093.	3.6	9
124	Predator/Prey-Interactions Promote Decomposition of Low-Quality Detritus. Wetlands, 2012, 32, 931-938.	1.5	8
125	Predator–prey interactions in a ladybeetle–aphid system depend on spatial scale. Ecology and Evolution, 2018, 8, 6537-6546.	1.9	8
126	Diet mixing in a parasitic plant: adaptation or constraint?. Plant Ecology, 2011, 212, 69-77.	1.6	7

#	Article	IF	CITATIONS
127	Importance of local vs. geographic variation in salt marsh plant quality for arthropod herbivore communities. Journal of Ecology, 2013, 101, 1169-1182.	4.0	7
128	Weak latitudinal gradients in insect herbivory for dominant rangeland grasses of North America. Ecology and Evolution, 2020, 10, 6385-6394.	1.9	7
129	Influence of proximal stimuli on swimming in the sea hare Aplysia brasiliana. Journal of Experimental Marine Biology and Ecology, 2003, 288, 223-237.	1.5	6
130	Geographic Variation in Plant Community Structure of Salt Marshes: Species, Functional and Phylogenetic Perspectives. PLoS ONE, 2015, 10, e0127781.	2.5	6
131	Effects of grasshoppers on prairies: Herbivore composition matters more than richness in three grassland ecosystems. Journal of Animal Ecology, 2018, 87, 1727-1737.	2.8	6
132	Community Ecology of Salt Marshes. , 2021, , 82-112.		6
133	State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03433.	2.2	6
134	Disturbance is complicated: Headwardâ€eroding saltmarsh creeks produce multiple responses and recovery trajectories. Limnology and Oceanography, 2022, 67, .	3.1	6
135	Buried hurricane legacies: increased nutrient limitation and decreased root biomass in coastal wetlands. Ecosphere, 2021, 12, e03674.	2.2	6
136	Post-ingestive consequences of consuming secondary metabolites in sea hares (Gastropoda:) Tj ETQq0 0 0 rgBT Toxicology, 1995, 111, 249-256.	/Overlock 0.5	10 Tf 50 387 5
137	Latitudinal variation in plant?herbivore interactions in European salt marshes. Oikos, 2007, 116, 543-549.	2.7	4
138	Crazy ants craving calcium: macronutrients and micronutrients can limit and stress an invaded grassland brown food web. Ecology, 2021, 102, e03263.	3.2	4
139	Contrasting latitudinal clines of nematode diversity in <i>Spartina alterniflora</i> salt marshes between native and introduced ranges. Diversity and Distributions, 2020, 26, 623-631.	4.1	3
140	Functional and taxonomic diversity of grasshoppers differentially shape above―and belowâ€ground communities and their function. Functional Ecology, 2021, 35, 167-180.	3.6	3
141	Drivers of litter mass loss and faunal composition of detritus patches change over time. Ecology and Evolution, 2021, 11, 9642-9651.	1.9	3
142	Directional movement of consumer fronts associated with creek heads in salt marshes. Ecology, 2021, 102, e03447.	3.2	3
143	A hurricane alters the relationship between mangrove cover and marine subsidies. Ecology, 2022, 103, e3662.	3.2	3
144	Responses of a tidal freshwater marsh plant community to chronic and pulsed saline intrusion. Journal of Ecology, 2022, 110, 1508-1524.	4.0	3

#	Article	IF	CITATIONS
145	Competition and abiotic stress affect the size of mangroves near their geographic range limit. Journal of Plant Ecology, 2022, 15, 129-140.	2.3	2
146	Hemolymph homeostasis in relation to diel feeding activity and microclimate in the prototypal land isopod <i>Ligia pallasii</i> . Canadian Journal of Zoology, 2000, 78, 588-595.	1.0	2
147	Coastal carbon processing rates increase with mangrove cover following a hurricane in Texas, <scp>USA</scp> . Ecosphere, 2022, 13, .	2.2	1
148	Program Profile: The <scp>G</scp> eorgia Coastal Ecosystems Long Term Ecological Research Project (GCEâ€LTER). Limnology and Oceanography Bulletin, 2015, 24, 117-120.	0.4	0
149	Variation in synchrony of production among species, sites, and intertidal zones in coastal marshes. Ecology, 2021, 102, e03278.	3.2	0
150	Variation in Densities of the Salt Marsh Katydid Orchelimum fidicinium over Space and Time. Estuaries and Coasts, 0, , 1.	2.2	0