Ian R Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458948/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica, 2020, 50, 19-33.	1.1	44
2	Flavin-containing monooxygenases: new structures from old proteins. Nature Structural and Molecular Biology, 2020, 27, 3-4.	8.2	2
3	Flavin-Containing Monooxygenase 1 Catalyzes the Production of Taurine from Hypotaurine. Drug Metabolism and Disposition, 2020, 48, 378-385.	3.3	40
4	Endogenous Roles of Mammalian Flavin-Containing Monooxygenases. Catalysts, 2019, 9, 1001.	3.5	9
5	Effect of Flavin-Containing Monooxygenase Genotype, Mouse Strain, and Gender on Trimethylamine <i>N</i> -oxide Production, Plasma Cholesterol Concentration, and an Index of Atherosclerosis. Drug Metabolism and Disposition, 2018, 46, 20-25.	3.3	30
6	Metabolic Biomarkers of Ageing in C57BL/6J Wild-Type and Flavin-Containing Monooxygenase 5 (FMO5)-Knockout Mice. Frontiers in Molecular Biosciences, 2018, 5, 28.	3.5	14
7	A highly sensitive liquid chromatography electrospray ionization mass spectrometry method for quantification of TMA, TMAO and creatinine in mouse urine. MethodsX, 2017, 4, 310-319.	1.6	17
8	Identification of Flavin-Containing Monooxygenase 5 (FMO5) as a Regulator of Glucose Homeostasis and a Potential Sensor of Gut Bacteria. Drug Metabolism and Disposition, 2017, 45, 982-989.	3.3	25
9	Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 167-181.	3.3	82
10	Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease. Drug Metabolism and Disposition, 2016, 44, 1839-1850.	3.3	248
11	Clinical utility gene card for: Trimethylaminuria – update 2014. European Journal of Human Genetics, 2015, 23, 1269-1269.	2.8	25
12	The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. Biochemical Pharmacology, 2015, 96, 267-277.	4.4	39
13	Relationships between flavin ontaining monoâ€oxygenase 3 (<i><scp>FMO3</scp></i>) genotype and trimethylaminuria phenotype in a <scp>J</scp> apanese population. British Journal of Clinical Pharmacology, 2014, 77, 839-851.	2.4	18
14	The phenotype of a flavin-containing monooyxgenase knockout mouse implicates the drug-metabolizing enzyme FMO1 as a novel regulator of energy balance. Biochemical Pharmacology, 2014, 90, 88-95.	4.4	41
15	Metabolism and Pharmacokinetics of the Anti-Tuberculosis Drug Ethionamide in a Flavin-Containing Monooxygenase Null Mouse. Pharmaceuticals, 2012, 5, 1147-1159.	3.8	14
16	The potential of knockout mouse lines in defining the role of flavin-containing monooxygenases in drug metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 1083-1094.	3.3	15
17	Human Flavin-Containing Monooxygenase 2.1 Catalyzes Oxygenation of the Antitubercular Drugs Thiacetazone and Ethionamide. Drug Metabolism and Disposition, 2009, 37, 178-186.	3.3	38
18	Deletion of the mouse Fmo1 gene results in enhanced pharmacological behavioural responses to imipramine. Pharmacogenetics and Genomics, 2009, 19, 289-299.	1.5	22

#	Article	IF	CITATIONS
19	Flavin-containing monooxygenases: mutations, disease and drug response. Trends in Pharmacological Sciences, 2008, 29, 294-301.	8.7	115
20	The potentially deleterious functional variant flavin-containing monooxygenase 2*1 is at high frequency throughout sub-Saharan Africa. Pharmacogenetics and Genomics, 2008, 18, 877-886.	1.5	43
21	Alternative promoters and repetitive DNA elements define the species-dependent tissue-specific expression of the <i>FMO1</i> genes of human and mouse. Biochemical Journal, 2007, 406, 491-499.	3.7	30
22	The Flavin-Containing Monoooxygenases (FMOs): Genetic Variation and its Consequences for the Metabolism of Therapeutic Drugs. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2007, 5, 292-313.	0.3	33
23	Molecular evolution and balancing selection in the flavin-containing monooxygenase 3 gene (FMO3). Pharmacogenetics and Genomics, 2007, 17, 827-839.	1.5	33
24	Characterization of Targeted Mouse Embryonic Stem Cell Chromosomes: <i>Karyotyping and Fluorescence</i> In Situ <i>Hybridization of Metaphase Spreads</i> . , 2006, 320, 321-328.		1
25	Cell-, tissue-, sex- and developmental stage-specific expression of mouse flavin-containing monooxygenases (Fmos). Biochemical Pharmacology, 2004, 68, 73-83.	4.4	106
26	Organization and evolution of the flavin-containing monooxygenase genes of human and mouse. Pharmacogenetics and Genomics, 2004, 14, 117-130.	5.7	151
27	Trimethylaminuria and a humanFMO3 mutation database. Human Mutation, 2003, 22, 209-213.	2.5	98
28	GENETIC POLYMORPHISMS OF FLAVIN-CONTAINING MONOOXYGENASE (FMO). Drug Metabolism Reviews, 2002, 34, 523-532.	3.6	50
29	Transfection of Liver In Vivo by Biolistic Particle Delivery: Its Use in the Investigation of Cytochrome P450 Gene Regulation. Molecular Biotechnology, 2002, 20, 145-152.	2.4	23
30	Quantification and cellular localization of expression in human skin of genes encoding flavin-containing monooxygenases and cytochromes P450 2 2Abbreviations: FMO, flavin-containing monooxygenase; CYP, cytochrome P450; KGM, keratinocyte growth medium; DMEM, Dulbecco's modified Eagle's medium Biochemical Pharmacology, 2001, 62, 777-786.	4.4	123
31	Orphan Receptor Promiscuity in the Induction of Cytochromes P450 by Xenobiotics. Journal of Biological Chemistry, 2001, 276, 12822-12826.	3.4	92
32	Compound heterozygosity for missense mutations in the flavin-containing monooxygenase 3 (FMO3) gene in patients with fish-odour syndrome. Pharmacogenetics and Genomics, 2000, 10, 799-807.	5.7	64
33	Effect of ethanol on the expression of hepatic glutathione S-transferase: an in vivo/in vitro study. Biochemical Pharmacology, 2000, 60, 1491-1496.	4.4	18
34	The Flavin-containing Monooxygenase 2 Gene (FMO2) of Humans, but Not of Other Primates, Encodes a Truncated, Nonfunctional Protein. Journal of Biological Chemistry, 1998, 273, 30599-30607.	3.4	122
35	IMMORTALIZED HEPATOCYTES FROM TRANSGENIC MICE. Biochemical Society Transactions, 1997, 25, 42S-42S.	3.4	0
36	Structural Organization of the Human Flavin-Containing Monooxygenase 3 Gene (FMO3), the Favored Candidate for Fish-Odor Syndrome, Determined Directly from Genomic DNA. Genomics, 1997, 46, 260-267.	2.9	51

#	Article	IF	CITATIONS
37	Differential Developmental and Tissue-Specific Regulation of Expression of the Genes Encoding Three Members of the Flavin-Containing Monooxygenase Family of Man, FMO1, FMO3 and FMO4. FEBS Journal, 1996, 235, 683-689.	0.2	129
38	The molecular biology of the flavin-containing monooxygenases of man. Chemico-Biological Interactions, 1995, 96, 17-32.	4.0	135
39	The second zinc atom in the matrix metalloproteinase catalytic domain is absent in the full-length enzymes: a possible role for the C-terminal domain. FEBS Letters, 1995, 358, 189-192.	2.8	25
40	Effects of the Anticonvulsant, Valproate, on the Expression of Components of the Cytochromeâ€ <i>P</i> â€450â€Mediated Monooxygenase System and Glutathione <i>S</i> â€Transferases. FEBS Journal, 1995, 231, 337-343.	0.2	10
41	Effects of the Anticonvulsant, Valproate, on the Expression of Components of the Cytochrome-P-450-Mediated Monooxygenase System and Glutathione S-Transferases. FEBS Journal, 1995, 231, 337-343.	0.2	22
42	Cell systems capable of sustaining phenobarbital induction of CYP2B genes. Biochemical Society Transactions, 1994, 22, 120S-120S.	3.4	0
43	Identification of DNA sequences involved in the transcription of a CYP2B2 gene. Biochemical Society Transactions, 1994, 22, 121S-121S.	3.4	1
44	Expression in a baculovirus system of a cDNA encoding human CYP2A6. Biochemical Society Transactions, 1994, 22, 122S-122S.	3.4	1
45	Regulation of CYP2B gene expression in the intestinal mucosa. Biochemical Society Transactions, 1994, 22, 123S-123S.	3.4	0
46	Long-term preservation and induction of drug metabolizing enzymes in co-cultured rat hepatocytes. Biochemical Society Transactions, 1994, 22, 124S-124S.	3.4	1
47	Regulation of cytochrome P4502B2 gene expression. Biochemical Society Transactions, 1994, 22, 125S-125S.	3.4	2
48	The Pyruvate Dehydrogenase Complex: Cloning of the Rat Somatic El α Subunit and Its Coordinate Expression with the mRNAs for the E1β E2, and E3 Catalytic Subunits in Developing Rat Brain. Journal of Neurochemistry, 1994, 62, 1682-1690.	3.9	12
49	Maintenance and induction in co-cultured rat hepatocytes of components of the cytochrome P450-mediated mono-oxygenase. Biochemical Pharmacology, 1993, 45, 1583-1591.	4.4	61
50	Quantification of cytochrome P450 reductase gene expression in human tissues. Archives of Biochemistry and Biophysics, 1992, 294, 168-172.	3.0	44
51	Responses and reactions. Nature, 1992, 359, 444-444.	27.8	1
52	Localization of cytochrome P-450 gene expression in normal and diseased human liver byin situ hybridization of wax-embedded archival material. Hepatology, 1992, 16, 682-687.	7.3	42
53	Structural and mechanistic studies on citrate synthase by nuclear magnetic resonance and Fourier transform infra-red spectroscopies. Biochemical Society Transactions, 1990, 18, 596-597.	3.4	0
54	Quantification of cytochrome P-450 gene expression in human tissues. Biochemical Society Transactions, 1990, 18, 615-616.	3.4	6

#	Article	IF	CITATIONS
55	Maintenance of cytochrome P-450IA2, IIB1 and IIB2 mRNAs by metyrapone in rat hepatocyte culture. Biochemical Society Transactions, 1990, 18, 1203-1203.	3.4	3
56	The P450 Superfamily: Updated Listing of All Genes and Recommended Nomenclature for the Chromosomal Loci. DNA and Cell Biology, 1989, 8, 1-13.	5.2	663
57	Structure and expression of human cytochrome <i>P</i> -450 genes. Biochemical Society Transactions, 1989, 17, 192-193.	3.4	3
58	lsolation and characterization of genes coding for cytochrome <i>b</i> 5 and cytochrome- <i>b</i> 5 reductase. Biochemical Society Transactions, 1989, 17, 194-195.	3.4	9
59	The effect of terpenoid compounds on cytochrome P-450 levels in rat liver. Biochemical Pharmacology, 1988, 37, 2223-2229.	4.4	72
60	Structure and expression of genes coding for components of the cytochrome <i>P</i> -450-mediated mono-oxygenase. Biochemical Society Transactions, 1987, 15, 573-575.	3.4	6
61	Expression of cytochrome <i>P</i> -450 genes in rat hepatoma cells. Biochemical Society Transactions, 1987, 15, 625-626.	3.4	7
62	Tissue-specific expression of cytochrome P-450 genes. Biochemical Society Transactions, 1987, 15, 626-627.	3.4	3
63	Structure and expression of human cytochrome <i>P</i> -450 genes. Biochemical Society Transactions, 1987, 15, 627-628.	3.4	1
64	The P450 Gene Superfamily: Recommended Nomenclature. DNA and Cell Biology, 1987, 6, 1-11.	5.2	790
65	Congenital diseases: Complementary genes for an adrenal enzyme deficiency. Nature, 1985, 314, 130-131.	27.8	5
66	Induction of cytochrome P-450 by phenobarbital is mediated at the level of transcription. Biochemical Pharmacology, 1985, 34, 2489-2494.	4.4	52
67	Hormonal Control of Carbonic Anhydrase III. Annals of the New York Academy of Sciences, 1984, 429, 287-301.	3.8	24
68	Cloning of cDNA coding for a rat liver protein whose expression is subject to gender-specific regulation by xenobiotics. Biochemical Society Transactions, 1984, 12, 103-104.	3.4	0
69	Microheterogeneity in a cytochrome P-450 multigene family. Biochemical Society Transactions, 1984, 12, 669-670.	3.4	7
70	A rapid one-step purification of NADPH-cytochrome c (P-450) reductase from rat liver microsomes. Analytical Biochemistry, 1983, 129, 430-433.	2.4	57
71	Cloning and sequence analysis of a rat liver cDNA coding for a phenobarbital-inducible microhetero-geneous cytochrome P-450 variant: regulation of its messenger level by xenobiotics. Gene, 1983, 26, 41-52.	2.2	33
72	Factors controlling the expression of genes coding for drug-metabolizing enzymes. Biochemical Society Transactions, 1983, 11, 460-463.	3.4	6

#	Article	IF	CITATIONS
73	Differential effect of phenobarbital and \hat{l}^2 -naphthoflavone on the mRNAs coding for cytochrome P450 and NADPH cytochrome P450 reductase. FEBS Letters, 1982, 150, 375-380.	2.8	19
74	Complexes of cytochrome P450 with metyrapone. FEBS Letters, 1982, 148, 302-306.	2.8	17
75	Evidence for the resumption of DNA replication prior to histone synthesis in HeLa cells after release from treatment with hydroxyurea. FEBS Letters, 1982, 140, 189-192.	2.8	11
76	Synthesis of rat muscle carbonic anhydrase III in a cell-free translation system. FEBS Letters, 1982, 148, 122-126.	2.8	5
77	Phosphorylation and dephosphorylation of chromosomal proteins during in vitro transcription. Cell Differentiation, 1981, 10, 23-31.	0.4	2