
Marco Conti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The H3.3 chaperone Hira complex orchestrates oocyte developmental competence. Development (Cambridge), 2022, 149, .	2.5	7
2	A PI3KÎ ³ mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Science Translational Medicine, 2022, 14, eabl6328.	12.4	6
3	Defining the Program of Maternal mRNA Translation during In vitro Maturation using a Single Oocyte Reporter Assay. Journal of Visualized Experiments, 2021, , .	0.3	2
4	The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation. Nature Communications, 2020, 11, 1399.	12.8	33
5	Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption. Nucleic Acids Research, 2020, 48, 3257-3276.	14.5	68
6	Cyclin B2 is required for progression through meiosis in mouse oocytes. Development (Cambridge), 2019, 146, .	2.5	50
7	RNA Binding Protein Networks and Translational Regulation in Oocytes. , 2019, , 193-220.		3
8	Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Human Reproduction Update, 2018, 24, 245-266.	10.8	208
9	Profiling Maternal mRNA Translation During Oocyte Development. Methods in Molecular Biology, 2018, 1818, 43-50.	0.9	3
10	Functional selectivity of GPCR-directed drug action through location bias. Nature Chemical Biology, 2017, 13, 799-806.	8.0	181
11	International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacological Reviews, 2017, 69, 93-139.	16.0	149
12	The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle. Scientific Reports, 2017, 7, 14077.	3.3	39
13	Cyclin A2 modulates kinetochore–microtubule attachment in meiosis II. Journal of Cell Biology, 2017, 216, 3133-3143.	5.2	30
14	Report from the 2016 University of California, San Francisco, Center for Reproductive Sciences retreat. Molecular Reproduction and Development, 2017, 84, 1024-1026.	2.0	0
15	Maternal mRNAs with distinct 3′ UTRs define the temporal pattern of <i>Ccnb1</i> synthesis during mouse oocyte meiotic maturation. Genes and Development, 2017, 31, 1302-1307.	5.9	57
16	Atropine augments cardiac contractility by inhibiting cAMP-specific phosphodiesterase type 4. Scientific Reports, 2017, 7, 15222.	3.3	11
17	Subcellular Targeting of PDE4 in Cardiac Myocytes and Generation of Signaling Compartments. Cardiac and Vascular Biology, 2017, , 143-160.	0.2	1
18	PDE4D phosphorylation: A coincidence detector integrating multiple signaling pathways. Cellular Signalling, 2016, 28, 719-724.	3.6	37

#	Article	IF	CITATIONS
19	FSH Regulates mRNA Translation in Mouse Oocytes and Promotes Developmental Competence. Endocrinology, 2016, 157, 872-882.	2.8	33
20	Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2424-2429.	7.1	37
21	DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. Journal of Cell Science, 2016, 129, 1271-82.	2.0	75
22	DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. Development (Cambridge), 2016, 143, e1.2-e1.2.	2.5	0
23	A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2023-2028.	7.1	65
24	Anchored PDE4 regulates chloride conductance in wildâ€ŧype and ΔF508â€CFTR human airway epithelia. FASEB Journal, 2014, 28, 791-801.	0.5	33
25	Multiple Pathways Mediate Luteinizing Hormone Regulation of cGMP Signaling in the Mouse Ovarian Follicle1. Biology of Reproduction, 2014, 91, 9.	2.7	52
26	The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of typeÂ4 cyclic nucleotide phosphodiesterases (PDE4s). Biochemical Journal, 2014, 459, 539-550.	3.7	34
27	Hira-Mediated H3.3 Incorporation Is Required for DNA Replication and Ribosomal RNA Transcription in the Mouse Zygote. Developmental Cell, 2014, 30, 268-279.	7.0	143
28	PDE4B mediates local feedback regulation of β1-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. Journal of Cell Science, 2014, 127, 1033-42.	2.0	35
29	Cyclic AMP compartments and signaling specificity: Role of cyclic nucleotide phosphodiesterases. Journal of General Physiology, 2014, 143, 29-38.	1.9	109
30	Anchored PDE4 controls CFTR conductance in normal and cystic fibrosis airway epithelia (1181.3). FASEB Journal, 2014, 28, 1181.3.	0.5	0
31	Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nature Cell Biology, 2013, 15, 1415-1423.	10.3	128
32	Cdc25A activity is required for the metaphase II arrest in mouse oocytes. Journal of Cell Science, 2013, 126, 1081-1085.	2.0	35
33	A novel loss-of-function mutation in Npr2 clarifies primary role in female reproduction and reveals a potential therapy for acromesomelic dysplasia, Maroteaux type. Human Molecular Genetics, 2013, 22, 345-357.	2.9	60
34	Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development (Cambridge), 2013, 140, 3624-3634.	2.5	115
35	Phosphoinositide 3-Kinase γ Protects Against Catecholamine-Induced Ventricular Arrhythmia Through Protein Kinase A–Mediated Regulation of Distinct Phosphodiesterases. Circulation, 2012, 126, 2073-2083.	1.6	74
36	Amphiregulin promotes the maturation of oocytes isolated from the small antral follicles of the rhesus macaque. Human Reproduction, 2012, 27, 2430-2437.	0.9	44

#	Article	IF	CITATIONS
37	Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Molecular and Cellular Endocrinology, 2012, 356, 65-73.	3.2	326
38	Phosphodiesterases and regulation of female reproductive function. Current Opinion in Pharmacology, 2011, 11, 665-669.	3.5	20
39	Inactivation of Multidrug Resistance Proteins Disrupts Both Cellular Extrusion and Intracellular Degradation of cAMP. Molecular Pharmacology, 2011, 80, 281-293.	2.3	42
40	Protein Tyrosine Kinase Wee1B Is Essential for Metaphase II Exit in Mouse Oocytes. Science, 2011, 332, 462-465.	12.6	103
41	When an Egg Is Not an Egg: Compromised Maternal mRNA Storage and Stabilization. Biology of Reproduction, 2011, 85, 429-430.	2.7	4
42	Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (<i>Dazl</i>) at the oocyte-to-zygote transition. Genes and Development, 2011, 25, 755-766.	5.9	224
43	Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. Journal of Clinical Investigation, 2011, 121, 2651-2661.	8.2	105
44	Genetic Dissection of Epidermal Growth Factor Receptor Signaling during Luteinizing Hormone-Induced Oocyte Maturation. PLoS ONE, 2011, 6, e21574.	2.5	89
45	Behavioral phenotype of phosphodiesterase 4A (PDE4A) knockout mice suggests a role in memory and anxiety. FASEB Journal, 2011, 25, .	0.5	0
46	Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. Journal of Cell Biology, 2010, 188, 199-207.	5.2	141
47	Beta amyloid 1–42â€induced depressiveâ€like behavior and decreases in adult neurogenesis are mediated by the phosphodiesderaseâ€4D (PDE4D) enzyme. FASEB Journal, 2010, 24, 762.1.	0.5	0
48	Cyclic GMP Signaling Is Involved in the Luteinizing Hormone-Dependent Meiotic Maturation of Mouse Oocytes1. Biology of Reproduction, 2009, 81, 595-604.	2.7	277
49	Epidermal Growth Factor-Like Growth Factors in the Follicular Fluid: Role in Oocyte Development and Maturation. Seminars in Reproductive Medicine, 2009, 27, 052-061.	1.1	101
50	From stem cells to germ cells and back again. Nature Medicine, 2008, 14, 1188-1190.	30.7	22
51	Luteinizing Hormone Signaling in Preovulatory Follicles Involves Early Activation of the Epidermal Growth Factor Receptor Pathway. Molecular Endocrinology, 2008, 22, 924-936.	3.7	182
52	Luteinizing Hormone-Dependent Activation of the Epidermal Growth Factor Network Is Essential for Ovulation. Molecular and Cellular Biology, 2007, 27, 1914-1924.	2.3	305
53	Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling. Annual Review of Biochemistry, 2007, 76, 481-511.	11.1	1,060
54	Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO Journal, 2006, 25, 5716-5725.	7.8	105

#	Article	IF	CITATIONS
55	Role of the Epidermal Growth Factor Network in Ovarian Follicles. Molecular Endocrinology, 2006, 20, 715-723.	3.7	303
56	Essential Role of the EGF Network in LHâ€induced Ovulation. FASEB Journal, 2006, 20, A978.	0.5	0
57	Splice variants of the cyclic nucleotide phosphodiesterase PDE4D exhibit distinct enzymatic properties and are differentially expressed and regulated in cardiac myocytes. FASEB Journal, 2006, 20, A543.	0.5	0
58	Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse. Current Biology, 2005, 15, 1670-1676.	3.9	194
59	Phosphodiesterase 4D Deficiency in the Ryanodine-Receptor Complex Promotes Heart Failure and Arrhythmias. Cell, 2005, 123, 25-35.	28.9	453
60	The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Developmental Biology, 2005, 287, 249-261.	2.0	175
61	EGF-Like Growth Factors As Mediators of LH Action in the Ovulatory Follicle. Science, 2004, 303, 682-684.	12.6	895
62	Cyclic nucleotide phosphodiesterase 3A–deficient mice as a model of female infertility. Journal of Clinical Investigation, 2004, 114, 196-205.	8.2	203
63	Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Developmental Biology, 2003, 258, 385-396.	2.0	139
64	Cyclic AMP-specific PDE4 Phosphodiesterases as Critical Components of Cyclic AMP Signaling. Journal of Biological Chemistry, 2003, 278, 5493-5496.	3.4	429
65	PDE4D plays a critical role in the control of airway smooth muscle contraction. FASEB Journal, 2003, 17, 1831-1841.	0.5	128
66	Phosphodiesterase Regulation Is Critical for the Differentiation and Pattern of Gene Expression in Granulosa Cells of the Ovarian Follicle. Molecular Endocrinology, 2003, 17, 1117-1130.	3.7	60
67	Protein kinase B/Akt is essential for the insulin- but not progesterone-stimulated resumption of meiosis in Xenopus oocytes. Biochemical Journal, 2003, 369, 227-238.	3.7	41
68	Specificity of the Cyclic Adenosine 3′,5′-Monophosphate Signal in Granulosa Cell Function. Biology of Reproduction, 2002, 67, 1653-1661.	2.7	172
69	Targeting of Cyclic AMP Degradation to beta 2-Adrenergic Receptors by beta -Arrestins. Science, 2002, 298, 834-836.	12.6	476
70	Role of cyclic nucleotide signaling in oocyte maturation. Molecular and Cellular Endocrinology, 2002, 187, 153-159.	3.2	286
71	Role of Phosphodiesterase Type 3A in Rat Oocyte Maturation1. Biology of Reproduction, 2001, 65, 1444-1451.	2.7	138

52 Specific expression of soluble adenylyl cyclase in male germ cells. , 2000, 56, 6-11.

92

#	Article	IF	CITATIONS
73	Type 4 Cyclic Adenosine Monophosphate-Specific Phosphodiesterases Are Expressed in Discrete Subcellular Compartments during Rat Spermiogenesis*. Endocrinology, 1999, 140, 2297-2306.	2.8	35
74	Role of cyclic nucleotide phosphodiesterases in resumption of meiosis1A recently proposed nomenclature for the PDE isoforms was used throughout this review. According to this nomenclature, the Arabic number indicates the family of phosphodiesterase, while the capital letter refers to the gene within the family (i.e. PDE3A=type 3 PDE, gene A).1. Molecular and Cellular Endocrinology, 1998, 145, 9-14.	3.2	83
75	Protein Kinase B/Akt Induces Resumption of Meiosis in Xenopus Oocytes. Journal of Biological Chemistry, 1998, 273, 18705-18708.	3.4	78
76	Selective Stimulation of a CAMP-Specific Phosphodiesterase (PDE4A5) Isoform by Phosphatidic Acid Molecular Species Endogenously Formed in Rat Thymocytes. FEBS Journal, 1997, 247, 1151-1157.	0.2	30
77	Identification of cyclic AMP-phosphodiesterase variants from the PDE4D gene expressed in human peripheral mononuclear cells. FEBS Letters, 1996, 384, 97-102.	2.8	36
78	GENE STRUCTURE, SPLICING VARIANTS AND REGULATION OF THE cAMP-SPECIFIC PHOSPHO-DIESTERASES. Biochemical Society Transactions, 1996, 24, 622S-622S.	3.4	0
79	Phosphorylation and Activation of a cAMP-specific Phosphodiesterase by the cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1996, 271, 16526-16534.	3.4	375
80	Hormonal Regulation of 3â€2,5â€2-Adenosine Monophosphate Phosphodiesterases in Cultured Rat Granulosa Cells*. Endocrinology, 1984, 114, 2361-2368.	2.8	60
81	Hormones and growth factors in the regulation of oocyte maturation. , 0, , 109-118.		2
82	The H3.3 Chaperone Hira Complex Orchestrates Oocyte Developmental Competence. SSRN Electronic Journal, 0, , .	0.4	0