Yasunori Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945773/publications.pdf

Version: 2024-02-01

64 papers

2,541 citations

218677 26 h-index 50 g-index

68 all docs

68
docs citations

68 times ranked 2834 citing authors

#	Article	IF	CITATIONS
1	A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5721-5728.	8.0	53
2	Optimization of a Soft Pressure Sensor in Terms of the Molecular Weight of the Ferroelectricâ€Polymer Sensing Layer. Advanced Functional Materials, 2022, 32, .	14.9	10
3	Printed, all-carbon-based flexible humidity sensor using a cellulose nanofiber/graphene nanoplatelet composite. Carbon Trends, 2022, 7, 100166.	3.0	20
4	Inkjetâ€Printed Ag/aâ€īiO ₂ /Ag Neuromorphic Nanodevice Based on Functionalized Ink. Advanced Engineering Materials, 2022, 24, .	3.5	5
5	Flexible organic thin-film transistor immunosensor printed on a one-micron-thick film. Communications Materials, 2021, 2, .	6.9	42
6	Artificial Cutaneous Sensing of Object Slippage using Soft Robotics with Closed‣oop Feedback Process. Small Science, 2021, 1, 2100002.	9.9	11
7	Artificial Cutaneous Sensing of Object Slippage using Soft Robotics with Closed‣oop Feedback Process. Small Science, 2021, 1, 2170007.	9.9	4
8	Flexible and Printed Organic Nonvolatile Memory Transistor with Bilayer Polymer Dielectrics. Advanced Materials Technologies, 2021, 6, 2100141.	5.8	9
9	Flexible printed temperature sensor with high humidity stability using bilayer passivation. Flexible and Printed Electronics, 2021, 6, 034002.	2.7	5
10	Visualizing Quasiâ€Static Electric Fields with Flexible and Printed Organic Transistors. Advanced Materials Technologies, 2021, 6, 2100723.	5.8	7
11	Deep Eutectic Solvent Induced Porous Conductive Composite for Fully Printed Piezoresistive Pressure Sensor. Advanced Materials Technologies, 2021, 6, 2100731.	5.8	15
12	Single and dual-gate organic field-effect transistors based on diketopyrrolopyrrole-diethienothiophene polymers: performance modulation via dielectric interfaces. Materials Research Express, 2021, 8, 096301.	1.6	1
13	Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene Polymerâ€Based Organic Transistor by Interface Engineering. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000097.	1.8	5
14	Electrode and dielectric layer interface device engineering study using furan flanked diketopyrrolopyrrole–dithienothiophene polymer based organic transistors. Scientific Reports, 2020, 10, 19989.	3.3	9
15	Printed Soft Sensor with Passivation Layers for the Detection of Object Slippage by a Robotic Gripper. Micromachines, 2020, 11, 927.	2.9	4
16	Microporous Induced Fully Printed Pressure Sensor for Wearable Soft Robotics Machine Interfaces. Advanced Intelligent Systems, 2020, 2, 2000179.	6.1	24
17	Flexible inkjet-printed dual-gate organic thin film transistors and PMOS inverters: Noise margin control by top gate. Organic Electronics, 2020, 85, 105847.	2.6	24
18	Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle–Stretchable Conductive Network. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35282-35290.	8.0	43

#	Article	IF	CITATIONS
19	High-Speed Complementary Integrated Circuit with a Stacked Structure Using Fine Electrodes Formed by Reverse Offset Printing. ACS Applied Electronic Materials, 2020, 2, 763-768.	4.3	13
20	Fully Printed PEDOT:PSS-based Temperature Sensor with High Humidity Stability for Wireless Healthcare Monitoring. Scientific Reports, 2020, 10, 2467.	3.3	159
21	Flexible PMOS Inverter and NOR Gate Using Inkjet-Printed Dual-Gate Organic Thin Film Transistors. IEEE Electron Device Letters, 2020, 41, 409-412.	3.9	19
22	Microporous Induced Fully Printed Pressure Sensor for Wearable Soft Robotics Machine Interfaces. Advanced Intelligent Systems, 2020, 2, 2070123.	6.1	0
23	Signal Detection of Object Slippage using Printed Soft Robotic Sensor. Proceedings of the International Display Workshops, 2020, , 878.	0.1	0
24	Improvement of Chemical Stability in Electrochemical Migration Resistance in Printed Silver Electrodes. Journal of Japan Institute of Electronics Packaging, 2020, 23, 516-520.	0.1	0
25	Printed low-voltage-operating organic thin-film transistors using high-k and paraelectric polymers. Japanese Journal of Applied Physics, 2019, 58, 080906.	1.5	4
26	Flexible and printed organic transistors: From materials to integrated circuits. Organic Electronics, 2019, 75, 105432.	2.6	179
27	Ferroelectric polymer-based fully printed flexible strain rate sensors and their application for human motion capture. Sensors and Actuators A: Physical, 2019, 295, 93-98.	4.1	29
28	Low Operating Voltage and Highly Pressure-Sensitive Printed Sensor for Healthcare Monitoring with Analogic Amplifier Circuit. ACS Applied Electronic Materials, 2019, 1, 246-252.	4.3	38
29	Toward Fully Printed Memristive Elements: a-TiO ₂ Electronic Synapse from Functionalized Nanoparticle Ink. ACS Applied Electronic Materials, 2019, 1, 2692-2700.	4.3	16
30	Three-dimensional monolithic integration in flexible printed organic transistors. Nature Communications, 2019, 10, 54.	12.8	201
31	A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors. Scientific Reports, 2018, 8, 3922.	3.3	52
32	A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors. Scientific Reports, 2018, 8, 6368.	3.3	43
33	Morphological Behavior of Printed Silver Electrodes with Protective Self-Assembled Monolayers for Electrochemical Migration. ACS Applied Materials & Interfaces, 2018, 10, 16210-16215.	8.0	12
34	Naphthalimide end capped anthraquinone based solution-processable n-channel organic semiconductors: effect of alkyl chain engineering on charge transport. Journal of Materials Chemistry C, 2018, 6, 3774-3786.	5.5	30
35	Printed Electronics: Organic Complementary Inverter Circuits Fabricated with Reverse Offset Printing (Adv. Electron. Mater. 1/2018). Advanced Electronic Materials, 2018, 4, 1870008.	5.1	O
36	Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer. Scientific Reports, 2018, 8, 4442.	3.3	90

3

#	Article	IF	CITATIONS
37	Organic Complementary Inverter Circuits Fabricated with Reverse Offset Printing. Advanced Electronic Materials, 2018, 4, 1700313.	5.1	52
38	Printed Organic Complementary Inverter with Single SAM Process Using a p-type D-A Polymer Semiconductor. Applied Sciences (Switzerland), 2018, 8, 1331.	2.5	16
39	Charge Carrier Distribution in Low-Voltage Dual-Gate Organic Thin-Film Transistors. Applied Sciences (Switzerland), 2018, 8, 1341.	2.5	11
40	Printed 5-V organic operational amplifiers for various signal processing. Scientific Reports, 2018, 8, 8980.	3.3	29
41	Organic Complementary Integrated Circuits Fabricated with Reverse Offset Printed Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
42	Printed Organic Circuit Systems for Wearable Lactate Sensors. ECS Meeting Abstracts, 2018, , .	0.0	0
43	(Invited) Wearable Printed Pressure Sensors with Ferroelectric Polymer for Healthcare Applications. ECS Meeting Abstracts, 2018, , .	0.0	0
44	Donor/Acceptor Type Polymer Semiconductor Applicable for Organic Thin-Film Transistors without Surface Modification on Printed Silver Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
45	Low Bandgap Bistetraceneâ€Based Organic Semiconductors Exhibiting Air Stability, High Aromaticity and Mobility. Chemistry - A European Journal, 2017, 23, 5076-5080.	3.3	28
46	Printed Organic Inverter Circuits with Ultralow Operating Voltages. Advanced Electronic Materials, 2017, 3, 1600557.	5.1	67
47	Compact Organic Complementary Dâ€Type Flipâ€Flop Circuits Fabricated with Inkjet Printing. Advanced Electronic Materials, 2017, 3, 1700208.	5.1	19
48	Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications. Scientific Reports, 2016, 6, 25714.	3.3	134
49	Printed 2 V-operating organic inverter arrays employing a small-molecule/polymer blend. Scientific Reports, 2016, 6, 34723.	3.3	41
50	Three-Dimensional, Inkjet-Printed Organic Transistors and Integrated Circuits with 100% Yield, High Uniformity, and Long-Term Stability. ACS Nano, 2016, 10, 10324-10330.	14.6	112
51	Vertically Stacked Complementary Organic Fieldâ€Effect Transistors and Logic Circuits Fabricated by Inkjet Printing. Advanced Electronic Materials, 2016, 2, 1600046.	5.1	31
52	Reverseâ€Offset Printing Optimized for Scalable Organic Thinâ€Film Transistors with Submicrometer Channel Lengths. Advanced Electronic Materials, 2015, 1, 1500145.	5.1	67
53	Flip-flop logic circuit based on fully solution-processed organic thin film transistor devices with reduced variations in electrical performance. Japanese Journal of Applied Physics, 2015, 54, 04DK03.	1.5	17
54	Control of threshold voltage in organic thin-film transistors by modifying gate electrode surface with MoOX aqueous solution and inverter circuit applications. Applied Physics Letters, 2015, 106, .	3.3	20

#	Article	IF	CITATION
55	Fine patterning method for silver nanoparticle electrodes using differential hydrophobic and hydrophilic surface properties. Japanese Journal of Applied Physics, 2014, 53, 04EK01.	1.5	6
56	Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nature Communications, 2014, 5, 4147.	12.8	337
57	High-speed operation in printed organic inverter circuits with short channel length. Organic Electronics, 2014, 15, 2696-2701.	2.6	30
58	Fully Solution-Processed Flexible Organic Thin Film Transistor Arrays with High Mobility and Exceptional Uniformity. Scientific Reports, 2014, 4, 3947.	3.3	187
59	Flip-Flop Circuits using Fully Solution Processed Pseudo-CMOS Circuits. , 2014, , .		O
60	Integrated circuits using fully solution-processed organic TFT devices with printed silver electrodes. Organic Electronics, 2013, 14, 3362-3370.	2.6	47
61	Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes. Scientific Reports, 2013, 3, 2048.	3.3	50
62	Patterning Method for Silver Nanoparticle Electrodes in Fully Solution-Processed Organic Thin-Film Transistors Using Selectively Treated Hydrophilic and Hydrophobic Surfaces. Japanese Journal of Applied Physics, 2013, 52, 05DB05.	1.5	11
63	Organic integrated circuits using room-temperature sintered silver nanoparticles as printed electrodes. Organic Electronics, 2012, 13, 3296-3301.	2.6	46
64	Conjugated 1,8-Naphthalimide Based Solution Processable n-Type Semiconductors for Organic FlectronicsO		0