Daniel Brewer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457226/publications.pdf Version: 2024-02-01

DANIEL RDEWED

#	Article	IF	CITATIONS
1	A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data. Cancers, 2022, 14, 1995.	3.7	5
2	Microbiomes of Urine and the Prostate Are Linked to Human Prostate Cancer Risk Groups. European Urology Oncology, 2022, 5, 412-419.	5.4	21
3	Rare Germline Variants Are Associated with Rapid Biochemical Recurrence After Radical Prostate Cancer Treatment: A Pan Prostate Cancer Group Study. European Urology, 2022, 82, 201-211.	1.9	2
4	Integration of Urinary EN2 Protein & Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy. Cancers, 2021, 13, 2102.	3.7	5
5	The Urine Biomarker PUR-4 Is Positively Associated with the Amount of Gleason 4 in Human Prostate Cancers. Life, 2021, 11, 1172.	2.4	1
6	Methodology for the at-home collection of urine samples for prostate cancer detection. BioTechniques, 2020, 68, 65-71.	1.8	11
7	Prostate cancer evolution from multilineage primary to single lineage metastases with implications for liquid biopsy. Nature Communications, 2020, 11, 5070.	12.8	44
8	Convergence of Prognostic Gene Signatures Suggests Underlying Mechanisms of Human Prostate Cancer Progression. Genes, 2020, 11, 802.	2.4	8
9	Development of a multivariable risk model integrating urinary cell DNA methylation and cellâ€free RNA data for the detection of significant prostate cancer. Prostate, 2020, 80, 547-558.	2.3	17
10	A novel stratification framework for predicting outcome in patients with prostate cancer. British Journal of Cancer, 2020, 122, 1467-1476.	6.4	9
11	Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.	27.8	1,966
12	The landscape of viral associations in human cancers. Nature Genetics, 2020, 52, 320-330.	21.4	261
13	SEPATH: benchmarking the search for pathogens in human tissue whole genome sequence data leads to template pipelines. Genome Biology, 2019, 20, 208.	8.8	11
14	A fourâ€group urine risk classifier for predicting outcomes in patients with prostate cancer. BJU International, 2019, 124, 609-620.	2.5	30
15	epiCaPture: A Urine DNA Methylation Test for Early Detection of Aggressive Prostate Cancer. JCO Precision Oncology, 2019, 2019, 1-18.	3.0	27
16	Transcriptome-Wide Effects of Sphingosine Kinases Knockdown in Metastatic Prostate and Breast Cancer Cells: Implications for Therapeutic Targeting. Frontiers in Pharmacology, 2019, 10, 303.	3.5	20
17	Potential for diagnosis of infectious disease from the 100,000 Genomes Project Metagenomic Dataset: Recommendations for reporting results. Wellcome Open Research, 2019, 4, 155.	1.8	9
18	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	21.4	182

DANIEL BREWER

#	Article	IF	CITATIONS
19	DESNT: A Poor Prognosis Category of Human Prostate Cancer. European Urology Focus, 2018, 4, 842-850.	3.1	30
20	A urine-based DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer. Clinical Epigenetics, 2018, 10, 147.	4.1	26
21	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genetics, 2017, 13, e1007001.	3.5	34
22	Mutational signatures of ionizing radiation in second malignancies. Nature Communications, 2016, 7, 12605.	12.8	214
23	Prostate Single Nucleotide Polymorphism Provides a Crucial Clue to Cancer Aggression in Active Surveillance Patients. European Urology, 2016, 69, 229-230.	1.9	2
24	Mutation detection in formalin-fixed prostate cancer biopsies taken at the time of diagnosis using next-generation DNA sequencing. Journal of Clinical Pathology, 2015, 68, 212-217.	2.0	21
25	Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nature Genetics, 2015, 47, 367-372.	21.4	380
26	HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocrine-Related Cancer, 2015, 22, 131-144.	3.1	10
27	The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520, 353-357.	27.8	1,185
28	A gene expression based predictor for high risk myeloma treated with intensive therapy and autologous stem cell rescue. Leukemia and Lymphoma, 2015, 56, 594-601.	1.3	7
29	Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. EBioMedicine, 2015, 2, 1133-1144.	6.1	260
30	Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. ELife, 2014, 3, .	6.0	318
31	Benzo "Equation missing" No EquationSource Format="TEX", only image pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genomics, 2014, 15, 880.	2.8	44
32	Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 2014, 345, 1251343.	12.6	348
33	Focal amplification of the androgen receptor gene in hormone-naive human prostate cancer. British Journal of Cancer, 2014, 110, 1655-1662.	6.4	26
34	Prognostic value of PTEN loss in men with conservatively managed localised prostate cancer. British Journal of Cancer, 2013, 108, 2582-2589.	6.4	91
35	Improved risk stratification in myeloma using a micro <scp>RNA</scp> â€based classifier. British Journal of Haematology, 2013, 162, 348-359.	2.5	53
36	Novel, gross chromosomal alterations involving PTEN cooperate with allelic loss in prostate cancer. Modern Pathology, 2012, 25, 902-910.	5.5	48

DANIEL BREWER

#	Article	IF	CITATIONS
37	Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncology, The, 2012, 13, 1114-1124.	10.7	125
38	siRNA Knockdown of Ribosomal Protein Gene RPL19 Abrogates the Aggressive Phenotype of Human Prostate Cancer. PLoS ONE, 2011, 6, e22672.	2.5	50
39	A Gene Expression–Based Predictor for Myeloma Patients at High Risk of Developing Bone Disease on Bisphosphonate Treatment. Clinical Cancer Research, 2011, 17, 6347-6355.	7.0	27
40	A HIF-Regulated VHL-PTP1B-Src Signaling Axis Identifies a Therapeutic Target in Renal Cell Carcinoma. Science Translational Medicine, 2011, 3, 85ra47.	12.4	54
41	Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. British Journal of Cancer, 2010, 102, 678-684.	6.4	234
42	A census of amplified and overexpressed human cancer genes. Nature Reviews Cancer, 2010, 10, 59-64.	28.4	480
43	PRKC-Â Expression Promotes the Aggressive Phenotype of Human Prostate Cancer Cells and Is a Novel Target for Therapeutic Intervention. Genes and Cancer, 2010, 1, 444-464.	1.9	46
44	Dissection of a complex transcriptional response using genomeâ€wide transcriptional modelling. Molecular Systems Biology, 2009, 5, 327.	7.2	22
45	rHVDM: an R package to predict the activity and targets of a transcription factor. Bioinformatics, 2009, 25, 419-420.	4.1	8
46	Integration of <i>ERG</i> gene mapping and geneâ€expression profiling identifies distinct categories of human prostate cancer. BJU International, 2009, 103, 1256-1269.	2.5	54
47	Biopsy tissue microarray study of Ki-67 expression in untreated, localized prostate cancer managed by active surveillance. Prostate Cancer and Prostatic Diseases, 2009, 12, 143-147.	3.9	37
48	Interlaboratory and Interplatform Comparison of Microarray Gene Expression Analysis of HepG2 Cells Exposed to Benzo(a)pyrene. OMICS A Journal of Integrative Biology, 2009, 13, 115-125.	2.0	31
49	Expression profiling of CD133 ⁺ and CD133 [—] epithelial cells from human prostate. Prostate, 2008, 68, 1007-1024.	2.3	64
50	TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. British Journal of Cancer, 2008, 99, 1849-1858.	6.4	75
51	Detection of TMPRSS2-ERG Translocations in Human Prostate Cancer by Expression Profiling Using GeneChip Human Exon 1.0 ST Arrays. Journal of Molecular Diagnostics, 2008, 10, 50-57.	2.8	49
52	Fitting ordinary differential equations to short time course data. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 519-544.	3.4	47
53	AHR- and DNA-Damage-Mediated Gene Expression Responses Induced by Benzo(<i>a</i>)pyrene in Human Cell Lines. Chemical Research in Toxicology, 2007, 20, 1797-1810.	3.3	86
54	rHVDM – a fast and user-friendly R package to predict transcription factor targets from microarray time series data. BMC Systems Biology, 2007, 1, .	3.0	4

DANIEL BREWER

#	Article	IF	CITATIONS
55	Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology, 2006, 7, R25.	9.6	102
56	Correction of scaling mismatches in oligonucleotide microarray data. BMC Bioinformatics, 2006, 7, 251.	2.6	7
57	Time- and concentration-dependent changes in gene expression induced by benzo(a)pyrene in two human cell lines, MCF-7 and HepC2. BMC Genomics, 2006, 7, 260.	2.8	104
58	Reconstructing gene networks: what are the limits?. Biochemical Society Transactions, 2003, 31, 1519-1525.	3.4	25