Yongping You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457018/publications.pdf

Version: 2024-02-01

70 papers

5,548 citations

43 h-index 70 g-index

71 all docs 71 docs citations

71 times ranked 7727 citing authors

#	Article	IF	CITATIONS
1	FOSL1 promotes proneural-to-mesenchymal transition of glioblastoma stem cells via UBC9/CYLD/NF-κB axis. Molecular Therapy, 2022, 30, 2568-2583.	8.2	20
2	Targeting nuclear pore complex and therapeutic response in glioblastoma stem cells Journal of Clinical Oncology, 2022, 40, e14000-e14000.	1.6	1
3	TGF- \hat{l}^21 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro-Oncology, 2021, 23, 435-446.	1.2	51
4	EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1–2 signaling. Neuro-Oncology, 2021, 23, 611-624.	1.2	116
5	Extracellular vesicles derived from hypoxic glioma stem-like cells confer temozolomide resistance on glioblastoma by delivering miR-30b-3p. Theranostics, 2021, 11, 1763-1779.	10.0	55
6	<p>Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma</p> . Cancer Management and Research, 2020, Volume 12, 3343-3352.	1.9	3
7	DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Molecular Cancer, 2020, 19, 28.	19.2	159
8	CRISPR-Cas13a system: a novel approach to precision oncology. Cancer Biology and Medicine, 2020, 17, 6-8.	3.0	10
9	PTEN Suppresses Glycolysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Molecular Cell, 2019, 76, 516-527.e7.	9.7	113
10	Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 166.	8.6	181
11	Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine, 2019, 42, 238-251.	6.1	135
12	Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene, 2019, 38, 2706-2721.	5.9	36
13	MiRâ€15b/HOTAIR/p53 form a regulatory loop that affects the growth of glioma cells. Journal of Cellular Biochemistry, 2018, 119, 4540-4547.	2.6	28
14	miR-129-5p targets Wnt5a to block PKC/ERK/NF-l̂ºB and JNK pathways in glioblastoma. Cell Death and Disease, 2018, 9, 394.	6.3	78
15	miR-17-5p-CXCL14 axis related transcriptome profile and clinical outcome in diffuse gliomas. Oncolmmunology, 2018, 7, e1510277.	4.6	17
16	Genomeâ€'wide identification of epithelialâ€'mesenchymal transitionâ€'associated microRNAs reveals novel targets for glioblastoma therapy. Oncology Letters, 2018, 15, 7625-7630.	1.8	9
17	Involvement of P2X ₇ Receptor in Proliferation and Migration of Human Glioma Cells. BioMed Research International, 2018, 2018, 1-12.	1.9	31
18	Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolomide resistance phenotype. Cancer Letters, 2018, 433, 210-220.	7.2	64

#	Article	IF	CITATIONS
19	Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Letters, 2018, 436, 10-21.	7.2	139
20	Activation of bradykinin B2 receptor induced the inflammatory responses of cytosolic phospholipase A2 after the early traumatic brain injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2957-2971.	3.8	15
21	MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. Journal of Neuro-Oncology, 2017, 133, 59-68.	2.9	36
22	Polycomb group expression signatures in the malignant progression of gliomas. Oncology Letters, 2017, 13, 2583-2590.	1.8	5
23	Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro-Oncology, 2017, 19, 1195-1205.	1.2	110
24	miR-423-5p contributes to a malignant phenotype and temozolomide chemoresistance in glioblastomas. Neuro-Oncology, 2017, 19, 55-65.	1.2	105
25	EZH2 alteration driven by microRNA-524-5p and microRNA-324-5p promotes cell proliferation and temozolomide resistance in glioma. Oncotarget, 2017, 8, 96239-96248.	1.8	20
26	BACH1 Promotes Temozolomide Resistance in Glioblastoma through Antagonizing the Function of p53. Scientific Reports, 2016, 6, 39743.	3.3	29
27	Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth. Cell, 2016, 167, 1281-1295.e18.	28.9	207
28	Classification based on mutations of <i>TERT </i> promoter and <i>IDH </i> characterizes subtypes in grade II/III gliomas. Neuro-Oncology, 2016, 18, 1099-1108.	1.2	93
29	Upregulation of miR-181s reverses mesenchymal transition by targeting KPNA4 in glioblastoma. Scientific Reports, 2015, 5, 13072.	3.3	67
30	NF-κB/RelA-PKM2 mediates inhibition of glycolysis by fenofibrate in glioblastoma cells. Oncotarget, 2015, 6, 26119-26128.	1.8	46
31	Localizing seizure-susceptible brain regions associated with low-grade gliomas using voxel-based lesion-symptom mapping. Neuro-Oncology, 2015, 17, 282-288.	1.2	151
32	PI3K inhibitor combined with miR-125b inhibitor sensitize TMZ-induced anti-glioma stem cancer effects through inactivation of Wnt/ \hat{l}^2 -catenin signaling pathway. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 1047-1055.	1.5	39
33	miR-622 suppresses proliferation, invasion and migration by directly targeting activating transcription factor 2 in glioma cells. Journal of Neuro-Oncology, 2015, 121, 63-72.	2.9	55
34	c-Myc–miR-29c–REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain, 2015, 138, 3654-3672.	7.6	55
35	MicroRNA profiling of Chinese primary glioblastoma reveals a temozolomide-chemoresistant subtype. Oncotarget, 2015, 6, 11676-11682.	1.8	28
36	IDH1/2 mutation status combined with Ki-67 labeling index defines distinct prognostic groups in glioma. Oncotarget, 2015, 6, 30232-30238.	1.8	77

#	Article	IF	Citations
37	Long Non-Coding RNA H19 Promotes Glioma Cell Invasion by Deriving miR-675. PLoS ONE, 2014, 9, e86295.	2.5	256
38	MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget, 2014, 5, 12908-12915.	1.8	54
39	Identification of intrinsic subtype-specific prognostic microRNAs in primary glioblastoma. Journal of Experimental and Clinical Cancer Research, 2014, 33, 9.	8.6	55
40	The SIRT2 Polymorphism rs10410544 and Risk of Alzheimer's Disease: A Meta-analysis. NeuroMolecular Medicine, 2014, 16, 448-456.	3.4	26
41	MicroRNA-377 inhibited proliferation and invasion of human glioblastoma cells by directly targeting specificity protein 1. Neuro-Oncology, 2014, 16, 1510-1522.	1.2	59
42	TPM3, a strong prognosis predictor, is involved in malignant progression through MMP family members and EMT-like activators in gliomas. Tumor Biology, 2014, 35, 9053-9059.	1.8	21
43	MiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-Ras. Neuro-Oncology, 2014, 16, 1341-1353.	1.2	120
44	Prevalence and Clinicopathologic Characteristics of the Molecular Subtypes in Malignant Glioma: A Multi-Institutional Analysis of 941 Cases. PLoS ONE, 2014, 9, e94871.	2.5	37
45	Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. BMC Cancer, 2013, 13, 234.	2.6	48
46	Involvement of FOS-mediated miR-181b/miR-21 signalling in the progression of malignant gliomas. European Journal of Cancer, 2013, 49, 3055-3063.	2.8	54
47	Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMPâ^² primary glioblastoma. Cancer Letters, 2013, 328, 120-125.	7.2	61
48	Wholeâ€genome microRNA expression profiling identifies a 5â€microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme. Cancer, 2013, 119, 814-824.	4.1	79
49	miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-Oncology, 2012, 14, 712-719.	1.2	167
50	Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group. Neuro-Oncology, 2012, 14, 1432-1440.	1.2	163
51	Functional Differences of miR-125b on the Invasion of Primary Glioblastoma CD133-Negative Cells and CD133-Positive Cells. NeuroMolecular Medicine, 2012, 14, 303-316.	3.4	39
52	High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. Journal of Translational Medicine, 2012, 10, 119.	4.4	116
53	New insights into the roles of ncRNA in the STAT3 pathway. Future Oncology, 2012, 8, 723-730.	2.4	30
54	MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. Journal of Neuro-Oncology, 2012, 106, 217-224.	2.9	36

#	Article	IF	CITATIONS
55	Upregulation of miR-196b Confers a Poor Prognosis in Glioblastoma Patients via Inducing a Proliferative Phenotype. PLoS ONE, 2012, 7, e38096.	2.5	55
56	Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the av 2 3/Pl3K/AKT/eNOS/NO signaling pathway in glioma cells. European Journal of Cell Biology, 2011, 90, 642-648.	3.6	88
57	MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Research, 2011, 1389, 9-18.	2.2	161
58	Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Research, 2011, 1411, 108-115.	2.2	125
59	MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. International Journal of Oncology, 2011, 40, 119-29.	3.3	70
60	miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. International Journal of Oncology, 2010, 36, 913-20.	3.3	82
61	AKT2 expression is associated with glioma malignant progression and required for cell survival and invasion. Oncology Reports, 2010, 24, 65-72.	2.6	31
62	Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncology Reports, 2010, 24, 195-201.	2.6	88
63	MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Research, 2010, 1312, 120-126.	2.2	125
64	Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Laboratory Investigation, 2010, 90, 144-155.	3.7	327
65	PUMA is a novel target of miR-221/222 in human epithelial cancers. International Journal of Oncology, 2010, 37, 1621-6.	3.3	70
66	MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells. Journal of Biomedical Research, 2010, 24, 436-443.	1.6	39
67	Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. International Journal of Oncology, 2009, 34, 1653-60.	3.3	70
68	hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Research, 2008, 1236, 185-193.	2.2	400
69	Glioma cells enhance endothelial progenitor cell angiogenesis via VEGFR-2, not VEGFR-1. Oncology Reports, 2008, 20, 1457-63.	2.6	8
70	Antisense telomerase RNA inhibits the growth of human glioma cells in vitro and in vivo. International Journal of Oncology, 2006, 28, 1225-32.	3.3	3