
Mark P Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455419/publications.pdf Version: 2024-02-01

MADE D RUDNS

#	Article	IF	CITATIONS
1	The Effect of Traumatic Brain Injury on Sleep Architecture and Circadian Rhythms in Mice—A Comparison of High-Frequency Head Impact and Controlled Cortical Injury. Biology, 2022, 11, 1031.	2.8	12
2	High-frequency head impact causes chronic synaptic adaptation and long-term cognitive impairment in mice. Nature Communications, 2021, 12, 2613.	12.8	29
3	High-Frequency Head Impact Disrupts Hippocampal Neural Ensemble Dynamics. Frontiers in Cellular Neuroscience, 2021, 15, 763423.	3.7	1
4	A Novel Multi-Dimensional Analysis of Rodent Gait Reveals the Compensation Strategies Used during Spontaneous Recovery from Spinal Cord and Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 517-527.	3.4	10
5	Chronic Neurobehavioral Impairments and Decreased Hippocampal Expression of Genes Important for Brain Glucose Utilization in a Mouse Model of Mild TBI. Frontiers in Endocrinology, 2020, 11, 556380.	3.5	14
6	Inhibition of Polo-like kinase 2 ameliorates pathogenesis in Alzheimer's disease model mice. PLoS ONE, 2019, 14, e0219691.	2.5	14
7	Polypathology and Dementia After Brain Trauma: Does Brain Injury Trigger Distinct Neurodegenerative Diseases, or Should They Be Classified Together as Traumatic Encephalopathy?. , 2019, , 573-581.		0
8	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	10.2	48
9	Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Molecular Neurodegeneration, 2018, 13, 17.	10.8	91
10	Traumatic Brain Injury in Mice Induces Acute Bacterial Dysbiosis Within the Fecal Microbiome. Frontiers in Immunology, 2018, 9, 2757.	4.8	105
11	Reduced cortical excitatory synapse number in APOE4 mice is associated with increased calcineurin activity. NeuroReport, 2017, 28, 618-624.	1.2	15
12	Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia, 2017, 65, 1423-1438.	4.9	230
13	A Mouse Model of Single and Repetitive Mild Traumatic Brain Injury. Journal of Visualized Experiments, 2017, , .	0.3	9
14	NOX2 deficiency alters macrophage phenotype through an IL-10/STAT3 dependent mechanism: implications for traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 65.	7.2	65
15	Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice. Frontiers in Endocrinology, 2017, 8, 231.	3.5	29
16	Combination of Fluorescent in situ Hybridization (FISH) and Immunofluorescence Imaging for Detection of Cytokine Expression in Microglia/Macrophage Cells. Bio-protocol, 2017, 7, .	0.4	12
17	Glial- and Neuronal-Specific Expression of CCL5 mRNA in the Rat Brain. Frontiers in Neuroanatomy, 2017, 11, 137.	1.7	45
18	Tyrosine kinase inhibition reverses <scp>TDP</scp> â€43 effects on synaptic protein expression, astrocytic function and amino acid disâ€homeostasis. Journal of Neurochemistry, 2016, 139, 610-623.	3.9	30

Mark P Burns

#	Article	IF	CITATIONS
19	The Effect of the APOE4 Gene on Accumulation of AÎ ² 40 After Brain Injury Cannot Be Reversed by Increasing apoE4 Protein. Journal of Neuropathology and Experimental Neurology, 2016, 75, 770-778.	1.7	10
20	Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. American Journal of Pathology, 2016, 186, 552-567.	3.8	84
21	Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?. Experimental Neurology, 2016, 275, 381-388.	4.1	144
22	Experimental Traumatic Brain Injury Induces Rapid Aggregation and Oligomerization of Amyloid-Beta in an Alzheimer's Disease Mouse Model. Journal of Neurotrauma, 2014, 31, 125-134.	3.4	90
23	Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Research, 2014, 1560, 73-82.	2.2	22
24	Controlled Cortical Impact Results in an Extensive Loss of Dendritic Spines that Is Not Mediated by Injury-Induced Amyloid-Beta Accumulation. Journal of Neurotrauma, 2013, 30, 1966-1972.	3.4	80
25	Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiology of Aging, 2013, 34, 1397-1411.	3.1	213
26	Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learning and Memory, 2013, 20, 256-266.	1.3	107
27	The Effect of Injury Severity on Behavior: A Phenotypic Study of Cognitive and Emotional Deficits after Mild, Moderate, and Severe Controlled Cortical Impact Injury in Mice. Journal of Neurotrauma, 2012, 29, 2283-2296.	3.4	178
28	Modulation of ABCA1 by an LXR Agonist Reduces Beta-Amyloid Levels and Improves Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 225-236.	3.4	54
29	The GABA _A Receptor Agonist THIP Ameliorates Specific Behavioral Deficits in the Mouse Model of Fragile X Syndrome. Developmental Neuroscience, 2011, 33, 395-403.	2.0	111
30	24S-hydroxycholesterol effects on lipid metabolism genes are modeled in traumatic brain injury. Brain Research, 2010, 1319, 1-12.	2.2	28
31	Challenges in neurodegeneration research. Frontiers in Psychiatry, 2010, 1, 7.	2.6	20
32	The cytoplasmic adaptor protein X11α and extracellular matrix protein Reelin regulate ApoE receptor 2 trafficking and cell movement. FASEB Journal, 2010, 24, 58-69.	0.5	26
33	Intracellular cholesterol homeostasis and amyloid precursor protein processing. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 853-859.	2.4	32
34	Parkin promotes intracellular AÂ1-42 clearance. Human Molecular Genetics, 2009, 18, 3206-3216.	2.9	89
35	Lowâ€density lipoprotein receptors regulate microglial inflammation through câ€Jun Nâ€ŧerminal kinase. Glia, 2009, 57, 444-453.	4.9	79
36	Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nature Medicine, 2009, 15, 377-379.	30.7	219

Mark P Burns

#	Article	IF	CITATIONS
37	Cortical Injury Increases Cholesterol 24S Hydroxylase (Cyp46) Levels in the Rat Brain. Journal of Neurotrauma, 2008, 25, 1087-1098.	3.4	54
38	The Metalloprotease Inhibitor TIMP-3 Regulates Amyloid Precursor Protein and Apolipoprotein E Receptor Proteolysis. Journal of Neuroscience, 2007, 27, 10895-10905.	3.6	67
39	Regulation of central nervous system cholesterol homeostasis by the liver X receptor agonist TO-901317. Neuroscience Letters, 2007, 423, 47-52.	2.1	33
40	Cholesterol independent effect of LXR agonist TOâ€901317 on gammaâ€secretase. Journal of Neurochemistry, 2007, 101, 929-936.	3.9	26
41	The effects of ABCA1 on cholesterol efflux and Aβ levels <i>in vitro</i> and <i>in vivo</i> . Journal of Neurochemistry, 2006, 98, 792-800.	3.9	101
42	Cholesterol Distribution, Not Total Levels, Correlate With Altered Amyloid Precursor Protein Processing in Statin-Treated Mice. NeuroMolecular Medicine, 2006, 8, 319-328.	3.4	52
43	Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration <i>>in vivo</i> >. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6990-6995.	7.1	649
44	Brain on steroids resists neurodegeneration. Nature Medicine, 2004, 10, 675-676.	30.7	8
45	Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming test. European Neuropsychopharmacology, 2004, 14, 274-281.	0.7	148
46	Use of in vivo models to study the role of cholesterol in the etiology of Alzheimer's disease. Neurochemical Research, 2003, 28, 979-986.	3.3	21
47	Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques. Molecular Brain Research, 2003, 110, 119-125.	2.3	108
48	Cdk5 Is a Key Factor in Tau Aggregation and Tangle Formation In Vivo. Neuron, 2003, 38, 555-565.	8.1	474
49	Cholesterol in Alzheimer's Disease and Tauopathy. Annals of the New York Academy of Sciences, 2002, 977, 367-375.	3.8	116