
Maria Sancho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455371/publications.pdf Version: 2024-02-01

Μλαίλ δλησηο

#	Article	IF	CITATIONS
1	Adenosine signaling activates ATP-sensitive K ⁺ channels in endothelial cells and pericytes in CNS capillaries. Science Signaling, 2022, 15, eabl5405.	3.6	33
2	Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells. Frontiers in Cardiovascular Medicine, 2022, 9, 869481.	2.4	5
3	Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1313-1327.	4.3	15
4	Traumatic Brain Injury Impairs Systemic Vascular Function through Disruption of Inward-Rectifier Potassium Channels. Function, 2021, 2, .	2.3	9
5	Role of Ca V 3.1 Channels in Myogenic Tone and Blood Pressure Regulation in Mouse Mesenteric Arteries. FASEB Journal, 2021, 35, .	0.5	0
6	Activity of Inwardly Rectifying K ⁺ Channels in Cerebral Arteries is Diminished in Dyslipidemia Without Overt Effects on Cerebral Blood Flow. FASEB Journal, 2021, 35, .	0.5	1
7	TRPA1 channel: New kid in the â€~neurovascular coupling' town. Cell Calcium, 2021, 96, 102407.	2.4	Ο
8	The Large-Conductance, Calcium-Activated Potassium Channel: A Big Key Regulator of Cell Physiology. Frontiers in Physiology, 2021, 12, 750615.	2.8	30
9	Intercellular Conduction Optimizes Arterial Network Function and Conserves Blood Flow Homeostasis During Cerebrovascular Challenges. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 733-750.	2.4	23
10	KIR channels in the microvasculature: Regulatory properties and the lipid-hemodynamic environment. Current Topics in Membranes, 2020, 85, 227-259.	0.9	4
11	Role of the α7 Nicotinic Acetylcholine Receptor in the Pathophysiology of Atherosclerosis. Frontiers in Physiology, 2020, 11, 621769.	2.8	22
12	A stepwise approach to resolving small ionic currents in vascular tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H632-H638.	3.2	0
13	From Cellsâ€ŧoâ€Organism: Impact of Dyslipidemia on Inwardly Rectifying K ⁺ Channels and Cerebral Vascular Function. FASEB Journal, 2020, 34, 1-1.	0.5	0
14	Membrane Lipid-K _{IR} 2.x Channel Interactions Enable Hemodynamic Sensing in Cerebral Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1072-1087.	2.4	29
15	An assessment of K _{IR} channel function in human cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H794-H800.	3.2	10
16	Reactive Oxygen Species Mediate the Suppression of Arterial Smooth Muscle T-type Ca2+ Channels by Angiotensin II. Scientific Reports, 2018, 8, 3445.	3.3	14
17	The Conducted Vasomotor Response: Function, Biophysical Basis, and Pharmacological Control. Annual Review of Pharmacology and Toxicology, 2018, 58, 391-410.	9.4	41
18	Cerebral Vascular K IR 2.x Channels are Distinctly Regulated by Membrane Lipids and Hemodynamic Forces FASEB Journal, 2018, 32, 705.7.	0.5	1

MARIA SANCHO

#	Article	IF	CITATIONS
19	Structural analysis of endothelial projections from mesenteric arteries. Microcirculation, 2017, 24, e12330.	1.8	14
20	Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra. European Journal of Pharmacology, 2017, 814, 216-225.	3.5	5
21	KIR channels tune electrical communication in cerebral arteries. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2171-2184.	4.3	29
22	Proliferation of Interstitial Cells in the Cyclophosphamide-Induced Cystitis and the Preventive Effect of Imatinib. BioMed Research International, 2017, 2017, 1-12.	1.9	10
23	Implications of α _v β ₃ Integrin Signaling in the Regulation of Ca ²⁺ Waves and Myogenic Tone in Cerebral Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2571-2578.	2.4	16
24	Altered neuronal and endothelial nitric oxide synthase expression in the bladder and urethra of cyclophosphamide-treated rats. Nitric Oxide - Biology and Chemistry, 2014, 39, 8-19.	2.7	13
25	Presence of the Ca ²⁺ -activated chloride channel anoctamin 1 in the urethra and its role in excitatory neurotransmission. American Journal of Physiology - Renal Physiology, 2012, 302, F390-F400.	2.7	19
26	Direct coupling through gap junctions is not involved in urethral neurotransmission. American Journal of Physiology - Renal Physiology, 2011, 300, F864-F872.	2.7	5
27	Refractoriness of urethral striated muscle contractility to nitric oxide-dependent cyclic GMP production. Nitric Oxide - Biology and Chemistry, 2010, 23, 26-33.	2.7	1
28	Presence of cyclic nucleotide-gated channels in the rat urethra and their involvement in nerve-mediated nitrergic relaxation. American Journal of Physiology - Renal Physiology, 2009, 297, F1353-F1360.	2.7	8
29	Blockade of CNG channels abrogates urethral relaxation induced by soluble guanylate cyclase activation. BMC Pharmacology, 2009, 9, .	0.4	Ο
30	Interstitial cells of Cajal in the urethra are cGMP-mediated targets of nitrergic neurotransmission. American Journal of Physiology - Renal Physiology, 2008, 295, F971-F983.	2.7	24
31	Interstitial cells of Cajal in the urethra as effectors of the nitric oxide action through the cyclic GMP pathway. BMC Pharmacology, 2007, 7, .	0.4	Ο