Takayuki Hirai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454080/publications.pdf

Version: 2024-02-01

		46984	42364
134	9,089	47	92
papers	citations	h-index	g-index
120	120	120	0070
138	138	138	8278
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogen peroxide splitting on Nafion-coated graphene quantum dots/carbon nitride photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113949.	2.0	1
2	Thermodynamic Properties of Tetra- <i>n</i> -butylphosphonium Dicarboxylate Semiclathrate Hydrates. Journal of Chemical & Data, 2022, 67, 67-73.	1.0	7
3	Photocatalytic Dinitrogen Fixation with Water on High-Phosphorus-Doped Carbon Nitride with Surface Nitrogen Vacancies. Langmuir, 2022, 38, 7137-7145.	1.6	5
4	Equilibrium Phase Relations and Dissociation Enthalpies of Tri- <i>n</i> -butylalkenylphosphonium Bromide Semiclathrate Hydrates. Journal of Chemical & Engineering Data, 2022, 67, 1415-1420.	1.0	6
5	Polythiophene-Doped Resorcinol–Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion. Journal of the American Chemical Society, 2021, 143, 12590-12599.	6.6	96
6	Spontaneous Isomerization of a Hydroxynaphthalene-Containing Spiropyran in Polar Solvents Enhanced by Hydrogen Bonding Interactions. ACS Omega, 2021, 6, 35619-35628.	1.6	4
7	Photocatalytic Dinitrogen Reduction with Water on Boron-Doped Carbon Nitride Loaded with Nickel Phosphide Particles. Langmuir, 2020, 36, 734-741.	1.6	27
8	Solar-to-hydrogen peroxide energy conversion on resorcinol–formaldehyde resin photocatalysts prepared by acid-catalysed polycondensation. Communications Chemistry, 2020, 3, .	2.0	55
9	A Naphthalimide–Sulfonylhydrazine Conjugate as a Fluorescent Chemodosimeter for Hypochlorite. Chemosensors, 2020, 8, 123.	1.8	12
10	Photocatalytic hydrogen peroxide splitting on metal-free powders assisted by phosphoric acid as a stabilizer. Nature Communications, 2020, 11, 3386.	5.8	65
11	Photocatalytic NH ₃ Splitting on TiO ₂ Particles Decorated with Pt–Au Bimetallic Alloy Nanoparticles. ACS Applied Nano Materials, 2020, 3, 1612-1620.	2.4	31
12	Photocatalytic Dinitrogen Fixation with Water on Bismuth Oxychloride in Chloride Solutions for Solar-to-Chemical Energy Conversion. Journal of the American Chemical Society, 2020, 142, 7574-7583.	6.6	140
13	Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nature Materials, 2019, 18, 985-993.	13.3	429
14	A coumarin–dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Advances, 2019, 9, 28636-28641.	1.7	21
15	Hydrogen Peroxide Production on a Carbon Nitride–Boron Nitrideâ€Reduced Graphene Oxide Hybrid Photocatalyst under Visible Light. ChemCatChem, 2018, 10, 2070-2077.	1.8	97
16	Nitrogen Fixation with Water on Carbon-Nitride-Based Metal-Free Photocatalysts with 0.1% Solar-to-Ammonia Energy Conversion Efficiency. ACS Applied Energy Materials, 2018, 1, 4169-4177.	2.5	103
17	Photoreductive synthesis of monodispersed Au nanoparticles with citric acid as reductant and surface stabilizing reagent. RSC Advances, 2017, 7, 6187-6192.	1.7	41
18	Selective Nitrate-to-Ammonia Transformation on Surface Defects of Titanium Dioxide Photocatalysts. ACS Catalysis, 2017, 7, 3713-3720.	5.5	150

#	Article	lF	CITATIONS
19	Titanium Dioxide/Reduced Graphene Oxide Hybrid Photocatalysts for Efficient and Selective Partial Oxidation of Cyclohexane. ACS Catalysis, 2017, 7, 293-300.	5.5	91
20	An antimalarial drug, tafenoquine, as a fluorescent receptor for ratiometric detection of hypochlorite. RSC Advances, 2017, 7, 30453-30458.	1.7	6
21	Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. Journal of the American Chemical Society, 2017, 139, 10929-10936.	6.6	721
22	Synthesis of Au Nanoparticles with Benzoic Acid as Reductant and Surface Stabilizer Promoted Solely by UV Light. Langmuir, 2017, 33, 13797-13804.	1.6	22
23	Naphthalimide–coumarin conjugate: ratiometric fluorescent receptor for self-calibrating quantification of cyanide anions in cells. RSC Advances, 2017, 7, 32304-32309.	1.7	17
24	Photocatalytic Dehalogenation of Aromatic Halides on Ta ₂ O ₅ -Supported Pt–Pd Bimetallic Alloy Nanoparticles Activated by Visible Light. ACS Catalysis, 2017, 7, 5194-5201.	5.5	47
25	Mellitic Triimide-Doped Carbon Nitride as Sunlight-Driven Photocatalysts for Hydrogen Peroxide Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 6478-6485.	3.2	92
26	Powdered Photocatalysts for Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2017, 25, 165-167.	0.0	0
27	Graphitic Carbon Nitride Doped with Biphenyl Diimide: Efficient Photocatalyst for Hydrogen Peroxide Production from Water and Molecular Oxygen by Sunlight. ACS Catalysis, 2016, 6, 7021-7029.	5.5	282
28	Carbon Nitride–Aromatic Diimide–Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. Journal of the American Chemical Society, 2016, 138, 10019-10025.	6.6	406
29	Coumarin–Spiropyran Dyad with a Hydrogenated Pyran Moiety for Rapid, Selective, and Sensitive Fluorometric Detection of Cyanide Anion. Analytical Chemistry, 2016, 88, 6805-6811.	3.2	74
30	Au Nanoparticles Supported on BiVO ₄ : Effective Inorganic Photocatalysts for H ₂ O ₂ Production from Water and O ₂ under Visible Light. ACS Catalysis, 2016, 6, 4976-4982.	5.5	272
31	Off–on fluorometric detection of cyanide anions in an aqueous mixture by an indane-based receptor. New Journal of Chemistry, 2016, 40, 1237-1243.	1.4	19
32	A pyrylium–coumarin dyad as a colorimetric receptor for ratiometric detection of cyanide anions by two absorption bands in the visible region. New Journal of Chemistry, 2016, 40, 195-201.	1.4	19
33	Photocatalytic Hydrogenation of Nitroaromatics to Anilines on Silica-Supported Iron Oxides with Hydrazine Monohydrate as a Reductant. Journal of Chemical Engineering of Japan, 2015, 48, 141-146.	0.3	4
34	Photocatalytic secondary amine synthesis from azobenzenes and alcohols on TiO ₂ loaded with Pd nanoparticles. New Journal of Chemistry, 2015, 39, 2856-2860.	1.4	16
35	Hot-Electron-Induced Highly Efficient O ₂ Activation by Pt Nanoparticles Supported on Ta ₂ O ₅ Driven by Visible Light. Journal of the American Chemical Society, 2015, 137, 9324-9332.	6.6	139
36	Effects of Surface Defects on Photocatalytic H ₂ O ₂ Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation. ACS Catalysis, 2015, 5, 3058-3066.	5.5	289

3

#	Article	IF	CITATIONS
37	Amino-substituted spirothiopyran as an initiator for self-assembly of gold nanoparticles. RSC Advances, 2015, 5, 77572-77580.	1.7	2
38	One-pot synthesis of secondary amines from alcohols and nitroarenes on TiO ₂ loaded with Pd nanoparticles under UV irradiation. New Journal of Chemistry, 2015, 39, 2467-2473.	1.4	17
39	Sunlightâ€Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metalâ€Free Photocatalysts. Angewandte Chemie - International Edition, 2014, 53, 13454-13459.	7.2	467
40	Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C ₃ N ₄) Photocatalyst Activated by Visible Light. ACS Catalysis, 2014, 4, 774-780.	5.5	580
41	Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chemical Communications, 2014, 50, 15255-15258.	2.2	168
42	Selective Photocatalytic Oxidation of Aniline to Nitrosobenzene by Pt Nanoparticles Supported on TiO ₂ under Visible Light Irradiation. ACS Catalysis, 2014, 4, 2418-2425.	5.5	69
43	Selective Hydrogen Peroxide Formation by Titanium Dioxide Photocatalysis with Benzylic Alcohols and Molecular Oxygen in Water. ACS Catalysis, 2013, 3, 2222-2227.	5.5	157
44	Rutile Crystallites Isolated from Degussa (Evonik) P25 TiO ₂ : Highly Efficient Photocatalyst for Chemoselective Hydrogenation of Nitroaromatics. ACS Catalysis, 2013, 3, 2318-2326.	5.5	65
45	Supported Au–Cu Bimetallic Alloy Nanoparticles: An Aerobic Oxidation Catalyst with Regenerable Activity by Visible‣ight Irradiation. Angewandte Chemie - International Edition, 2013, 52, 5295-5299.	7.2	176
46	Photocatalytic hydrodenitrogenation of aromatic cyanides on TiO2 loaded with Pd nanoparticles. Catalysis Science and Technology, 2013, 3, 1718.	2.1	12
47	Spiropyran–cholesterol conjugate as a photoresponsive organogelator. New Journal of Chemistry, 2013, 37, 2642.	1.4	12
48	Lightâ€Triggered Selfâ€Assembly of Gold Nanoparticles Based on Photoisomerization of Spirothiopyran. Angewandte Chemie - International Edition, 2013, 52, 8304-8308.	7.2	80
49	Selective side-chain oxidation of alkyl-substituted aromatics on TiO2 partially coated with WO3 as a photocatalyst. Catalysis Science and Technology, 2013, 3, 2270.	2.1	36
50	Titanium Oxide-based Photocatalysts for Selective Organic Transformations. Journal of the Japan Petroleum Institute, 2012, 55, 287-298.	0.4	17
51	Highly Efficient and Selective Hydrogenation of Nitroaromatics on Photoactivated Rutile Titanium Dioxide. ACS Catalysis, 2012, 2, 2475-2481.	5.5	131
52	Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Ptnanoparticles. Catalysis Science and Technology, 2012, 2, 400-405.	2.1	84
53	Photocatalytic H ₂ O ₂ Production from Ethanol/O ₂ System Using TiO ₂ Loaded with Au–Ag Bimetallic Alloy Nanoparticles. ACS Catalysis, 2012, 2, 599-603.	5.5	361
54	Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer. New Journal of Chemistry, 2010, 34, 714.	1.4	23

#	Article	IF	Citations
55	Hydrophobic Cr–Si mixed oxides as a catalyst for visible light-induced partial oxidation of cyclohexane. New Journal of Chemistry, 2010, 34, 2841.	1.4	18
56	Selective organic transformations on titanium oxide-based photocatalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9, 157-170.	5 . 6	315
57	有機─無機ãƒē,Ħf—リッド型å‰è§¦åª'ã«ã,ã,‹é;択的物質å‱æ•. Hosokawa Powder T	ecl ono logy	Foundation
58	Preparation of ZnO nanoparticles in a reverse micellar system and their photoluminescence properties. Journal of Colloid and Interface Science, 2005, 284, 184-189.	5.0	24
59	Immobilization of CdS nanoparticles formed in reverse micelles onto aluminosilicate supports and their photocatalytic properties. Journal of Colloid and Interface Science, 2005, 288, 513-516.	5.0	28
60	Preparation of Sr2CeO4:Eu3+,Dy3+White Luminescence Phosphor Particles and Thin Films by Using an Emulsion Liquid Membrane System. Journal of Physical Chemistry B, 2005, 109, 5569-5573.	1.2	40
61	Fluorometric Detection of pH and Metal Cations by 1,4,7,10-Tetraazacyclododecane (Cyclen) Bearing Two Anthrylmethyl Groups. Industrial & Engineering Chemistry Research, 2005, 44, 847-851.	1.8	14
62	Preparation of Y2O3 nanoparticulate thin films using an emulsion liquid membrane system. Journal of Colloid and Interface Science, 2004, 275, 508-513.	5.0	16
63	Preparation of Gd2O3:Yb,Er and Gd2O2S:Yb,Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system. Journal of Colloid and Interface Science, 2004, 269, 103-108.	5.0	84
64	Preparation of yttrium oxysulfide phosphor nanoparticles with infrared-to-green and -blue upconversion emission using anÂemulsion liquid membrane system. Journal of Colloid and Interface Science, 2004, 273, 470-477.	5.0	53
65	Preparation of Y2O3:Eu3+ nanoparticles in reverse micellar systems and their photoluminescence properties. Journal of Colloid and Interface Science, 2004, 276, 339-345.	5.0	39
66	Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquidâ^'Liquid Extraction. Energy & Extraction.	2.5	62
67	Heterogeneous Fluorometric Detection of pH and Metal Cations by Amphiphilic Zeolite Modified with Anthracene-Substituted Azamacrocycle. Industrial & Engineering Chemistry Research, 2004, 43, 6064-6069.	1.8	5
68	Preparation of ZnS:Mn Nanoparticles in Reverse Micellar Systems and Their Photoluminescent Properties. Journal of Chemical Engineering of Japan, 2004, 37, 675-679.	0.3	2
69	Immobilization of RuS ₂ Nanoparticles Prepared in Reverse Micellar System onto Thiol-Modified Polystyrene Particles and their Photocatalytic Properties. Journal of Nanoparticle Research, 2003, 5, 61-67.	0.8	10
70	Dithiol-mediated incorporation of CdS nanoparticles from reverse micellar system into Zn-doped SBA-15 mesoporous silica and their photocatalytic properties. Journal of Colloid and Interface Science, 2003, 268, 394-399.	5.0	30
71	Vanadosilicate Molecular Sieve as a Catalyst for Oxidative Desulfurization of Light Oil. Industrial & Lamp; Engineering Chemistry Research, 2003, 42, 6034-6039.	1.8	92
72	Photochemical Production of Biphenyls from Oxidized Sulfur Compounds Obtained by Oxidative Desulfurization of Light Oils. Energy & Energy & 17, 95-100.	2.5	15

#	Article	IF	Citations
73	Desulfurization Process for Light Oil Based on Chemical Adsorption of Sulfur Compounds on Polymer-Supported Imidation Agent Journal of Chemical Engineering of Japan, 2003, 36, 1528-1531.	0.3	3
74	S-Methylsulfonium Salts Obtained by Desulfurization of Vacuum Gas Oil and Catalytic-Cracked Gasoline as Thermal Latent Polymerization Initiator Journal of Chemical Engineering of Japan, 2003, 36, 343-347.	0.3	2
75	Polymer-Supported Sulfonium Salts Obtained by Desulfurization of Light Oil as Novel Phase Transfer Catalyst Journal of Chemical Engineering of Japan, 2003, 36, 220-224.	0.3	О
76	Separation of Transition Metals Using Inorganic Adsorbents Modified with Chelating Ligands. Industrial & Description of Transition Metals Using Inorganic Adsorbents Modified with Chelating Ligands. Industrial & Description of Transition Metals Using Inorganic Adsorbents Modified with Chelating Ligands.	1.8	57
77	The preparation of rare earth phosphate fine particles in an emulsion liquid membrane systemElectronic supplementary information (ESI) available: SEM images of phosphate particles prepared in the homogeneous system, and SEM images of La phosphate particles prepared via the ELM system, following calcination for 2 h at 573 and 1373 K. See http://www.rsc.org/suppdata/jm/b1/b105743j/.	6.7	61
78	Preparation of Y2O3:Yb,Er Infrared-to-Visible Conversion Phosphor Fine Particles Using an Emulsion Liquid Membrane System. Chemistry of Materials, 2002, 14, 3576-3583.	3.2	94
79	Dithiol-Mediated Immobilization of CdS Nanoparticles from Reverse Micellar System onto Zn-Doped Silica Particles and Their High Photocatalytic Activity. Journal of Colloid and Interface Science, 2002, 252, 89-92.	5.0	11
80	Preparation of Gd2O3: Eu3+ and Gd2O2S: Eu3+ Phosphor Fine Particles Using an Emulsion Liquid Membrane System. Journal of Colloid and Interface Science, 2002, 253, 62-69.	5.0	68
81	Review of Advanced Liquidâ^'Liquid Extraction Systems for the Separation of Metal Ions by a Combination of Conversion of the Metal Species with Chemical Reaction. Industrial & Engineering Chemistry Research, 2001, 40, 3085-3091.	1.8	67
82	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 5. Denitrogenation Reactivity of Basic and Neutral Nitrogen Compounds. Industrial & Designment Chemistry Research, 2001, 40, 4919-4924.	1.8	13
83	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 4. Desulfurization and Simultaneous Denitrogenation of Vacuum Gas Oil. Industrial & Desulfurization Chemistry Research, 2001, 40, 3398-3405.	1.8	12
84	A novel methodology towards deep desulfurization of light oil effected by sulfimides formation. Chemical Communications, 2001, , 1256-1257.	2.2	19
85	Stabilization of CdS Nanoparticles Immobilized on Thiol-Modified Polystyrene Particles by Encapsulation with Polythiourethane. Journal of Physical Chemistry B, 2001, 105, 9711-9714.	1.2	47
86	Incorporation of CdS Nanoparticles Formed in Reverse Micelles into Mesoporous Silica. Journal of Colloid and Interface Science, 2001, 235, 358-364.	5.0	49
87	Recent Research Development in Solvent Extraction. Design of Liquid-Liquid Extraction Process for Separation of Metal Ions Kagaku Kogaku Ronbunshu, 2000, 26, 497-505.	0.1	1
88	Incorporation of CdS nanoparticles formed in reverse micelles into silica matrices via a sol–gel process: preparation of nano-CdS-containing silica colloids and silica glass. Journal of Materials Chemistry, 2000, 10, 2592-2596.	6.7	21
89	Preparation of nano-CdS–polyurethane composites via in situ polymerization in reverse micellar systems. Journal of Materials Chemistry, 2000, 10, 2234-2235.	6.7	15
90	Preparation of Y2O3 â^¶ Eu3+ phosphor fine particles using an emulsion liquid membrane system. Journal of Materials Chemistry, 2000, 10, 2306-2310.	6.7	58

#	Article	IF	Citations
91	The Preparation of Spherical Calcium Phosphate Fine Particles Using an Emulsion Liquid Membrane System. Langmuir, 2000, 16, 955-960.	1.6	61
92	Preparation of Semiconductor Nanoparticleâ^'Polymer Composites by Direct Reverse Micelle Polymerization Using Polymerizable Surfactants. Journal of Physical Chemistry B, 2000, 104, 8962-8966.	1.2	81
93	Mechanism of Photoreductive Extraction of Vanadium in a Liquidâ^'Liquid Extraction System Using Bis(2-ethylhexyl)phosphoric Acid. Industrial & Engineering Chemistry Research, 2000, 39, 3018-3023.	1.8	7
94	Selective Extraction of Y from a Ho/Y/Er Mixture by Liquidâ^'Liquid Extraction in the Presence of a Water-Soluble Complexing Agent. Industrial & Engineering Chemistry Research, 2000, 39, 3907-3911.	1.8	45
95	Photochemical Desulfurization of Light Oils Using Oil/Hydrogen Peroxide Aqueous Solution Extraction System: Application for High Sulfur Content Straight-Run Light Gas Oil and Aromatic Rich Light Cycle Oil Journal of Chemical Engineering of Japan, 1999, 32, 158-161.	0.3	18
96	Separation and Recovery of Gallium and Indium from Simulated Zinc Refinery Residue by Liquidâ^'Liquid Extraction. Industrial & Engineering Chemistry Research, 1999, 38, 1032-1039.	1.8	84
97	Size-Selective Incorporation of CdS Nanoparticles into Mesoporous Silica. Journal of Physical Chemistry B, 1999, 103, 4228-4230.	1.2	135
98	Visible Light-Induced Deep Desulfurization Process for Light Oils by Photochemical Electron-Transfer Oxidation in an Organic Two-Phase Extraction System. Industrial & Engineering Chemistry Research, 1999, 38, 3310-3318.	1.8	36
99	Identification of Desulfurization Products in the Photochemical Desulfurization Process for Benzothiophenes and Dibenzothiophenes from Light Oil Using an Organic Two-Phase Extraction System. Industrial & Description (System. Industrial & Description) (System. I	1.8	39
100	A Deep Desulfurization Process for Light Oil by Photosensitized Oxidation Using a Triplet Photosensitizer and Hydrogen Peroxide in an Oil/Water Two-Phase Liquidâ ⁻ 'Liquid Extraction System. Industrial & Description of Chemistry Research, 1999, 38, 1589-1595.	1.8	45
101	Preparation of Semiconductor Nanoparticleâ^'Polyurea Composites Using Reverse Micellar Systems via an in Situ Diisocyanate Polymerization. Journal of Physical Chemistry B, 1999, 103, 10120-10126.	1.2	41
102	Preparation of spherical oxalate particles of rare earths in emulsion liquid membrane system. AICHE Journal, 1998, 44, 197-206.	1.8	24
103	Preparation of Rare-Earth-Metal Oxalate Spherical Particles in Emulsion Liquid Membrane System Using Alkylphosphinic Acid as Cation Carrier. Langmuir, 1998, 14, 6648-6653.	1.6	25
104	Te Recovery of Phosphorus Value from Incineration Ashes of Sewage Sludge Using Solvent Extraction Kagaku Kogaku Ronbunshu, 1998, 24, 273-278.	0.1	3
105	Effects of Thiols on Photocatalytic Properties of Nano-CdS-Polythiourethane Composite Particles Journal of Chemical Engineering of Japan, 1998, 31, 1003-1006.	0.3	20
106	Quantitative Study on Thiophenol Modification and Redispersion Property of Cadmium Sulfide Ultrafine Particles Prepared in Reverse Micellar Systems Journal of Chemical Engineering of Japan, 1998, 31, 142-146.	0.3	8
107	Preparation of Rare Earth Oxalate Ultrafine Particles in Emulsion Liquid Membrane System Using Carboxylic Acid as Cation Carrier Journal of Chemical Engineering of Japan, 1998, 31, 474-477.	0.3	10
108	Separation of Rare Metals by Solvent Extraction Employing Reductive Stripping Technique. Mineral Processing and Extractive Metallurgy Review, 1997, 17, 81-107.	2.6	9

#	Article	IF	CITATIONS
109	Photoreductive stripping of vanadium using 2-propanol as radical scavenger in liquid-liquid extraction process of vanadium and molybdenum Journal of Chemical Engineering of Japan, 1997, 30, 268-273.	0.3	5
110	Practical study of liquid-liquid extraction process for separation of rare earth elements with bis(2-ethylhexyl) phosphinic acid Journal of Chemical Engineering of Japan, 1997, 30, 1040-1046.	0.3	28
111	Preparation of Fe Oxide and Composite Ti-Fe Oxide Ultrafine Particles in Reverse Micellar Systems Journal of Chemical Engineering of Japan, 1997, 30, 938-943.	0.3	11
112	Preparation of Cadmium Sulfide Ultrafine Particles Surface-Modified with Thiols in Reverse Micellar Systems and Redispersion in Non-Micellars Solvents Journal of Chemical Engineering of Japan, 1997, 30, 86-93.	0.3	37
113	Effect of Photosensitizer and Hydrogen Peroxide on Desulfurization of Light Oil by Photochemical Reaction and Liquidâ 'Liquid Extraction. Industrial & Engineering Chemistry Research, 1997, 36, 530-533.	1.8	51
114	Biomimetic Synthesis of Calcium Carbonate Particles in a Pseudovesicular Double Emulsion. Langmuir, 1997, 13, 6650-6653.	1.6	102
115	Desulfurization Process for Light Oil by Photochemical Reaction and Liquid-Liquid Extraction: Removal of Benzothiophenes and Alkyl Sulfides Journal of Chemical Engineering of Japan, 1997, 30, 173-175.	0.3	13
116	Preparation and Photocatalytic Reactions of Titanium Dioxide Ultrafine Particles in Reverse Micellar Systems Journal of Chemical Engineering of Japan, 1997, 30, 137-145.	0.3	12
117	Acidic Phosphinates with Different Alkyl Groups as Extractants for Rare Earths Journal of Chemical Engineering of Japan, 1996, 29, 1041-1044.	0.3	14
118	Separation of Ce from La/Ce/Nd mixture by photooxidation and liquid-liquid extraction Journal of Chemical Engineering of Japan, 1996, 29, 731-733.	0.3	17
119	Preparation of Copper Oxalate Fine Particles Using Emulsion Liquid Membrane System Journal of Chemical Engineering of Japan, 1996, 29, 842-850.	0.3	11
120	Mechanism of formation of silver halide ultrafine particles in reverse micellar systems Journal of Chemical Engineering of Japan, 1996, 29, 501-507.	0.3	23
121	Mechanism of formation of lead sulfide ultrafine particles in reverse micellar systems Journal of Chemical Engineering of Japan, 1995, 28, 468-473.	0.3	20
122	Extraction and separation of molybdenum and vanadium using bis(2-ethylhexyl)monothiophosphoric acid and bis(2-ethylhexyl)phosphoric acid Journal of Chemical Engineering of Japan, 1995, 28, 85-90.	0.3	18
123	The effect of formic acid on photoreductive stripping of vanadium in liquid-liquid extraction process of vanadium and molybdenum Journal of Chemical Engineering of Japan, 1995, 28, 486-488.	0.3	6
124	Preparation of Metal Sulfide Composite Ultrafine Particles in Reverse Micellar Systems and Their Photocatalytic Property Journal of Chemical Engineering of Japan, 1994, 27, 590-597.	0.3	79
125	Photoreductive Stripping of Vanadium in Solvent Extraction Process for Separation of Vanadium and Molybdenum Journal of Chemical Engineering of Japan, 1993, 26, 416-421.	0.3	13
126	Separation of europium from samarium and gadolinium by combination of photochemical reduction and solvent extraction Journal of Chemical Engineering of Japan, 1993, 26, 64-67.	0.3	22

Takayuki Hirai

#	Article	IF	CITATION
127	High-performance separation process of Eu from a Sm/Eu/Gd mixture by liquid-liquid extraction combined with a photoredox reaction Bunseki Kagaku, 1993, 42, 681-686.	0.1	1
128	Synergistic Extraction of Rare-Earth Elements by Alkyl Phosphoric Acid and Tri-n-Octylmethylammonium Nitrate Journal of Chemical Engineering of Japan, 1992, 25, 218-220.	0.3	1
129	Separation of europium from samarium and gadolinium by combination of electrochemical reduction and solvent extraction Journal of Chemical Engineering of Japan, 1992, 25, 644-648.	0.3	31
130	Extraction on vanadium(V) from hydrochloric acid by tri-n-octylmethylammonium chloride Journal of Chemical Engineering of Japan, 1991, 24, 301-305.	0.3	4
131	Mechanism of extraction of cobalt from hydrochloric acid by tri-n-octylmethylammonium chloride Journal of Chemical Engineering of Japan, 1991, 24, 58-62.	0.3	7
132	Extraction and separation of rare-earth elements by tri-n-octylmethylammonium nitrate and .BETAdiketone using water-soluble complexing agent Journal of Chemical Engineering of Japan, 1991, 24, 731-736.	0.3	33
133	Electro-reductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum Journal of Chemical Engineering of Japan, 1991, 24, 124-125.	0.3	8
134	Separation and purification of vanadium and molybdenum by solvent extraction followed by reductive stripping Journal of Chemical Engineering of Japan, 1990, 23, 208-213.	0.3	15