Reinhard Well

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9453617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the Impact of Liquid Organic Fertilisation and Associated Application Techniques on N2, N2O and CO2 Fluxes from Agricultural Soils. Agriculture (Switzerland), 2022, 12, 692.	3.1	1
2	Nitrate uptake and carbon exudation – do plant roots stimulate or inhibit denitrification?. Plant and Soil, 2021, 459, 217-233.	3.7	15
3	Development and verification of a novel isotopic N 2 O measurement technique for discrete static chamber samples using cavity ringâ€down spectroscopy. Rapid Communications in Mass Spectrometry, 2021, 35, e9049.	1.5	4
4	Denitrification in soil as a function of oxygen availability at the microscale. Biogeosciences, 2021, 18, 1185-1201.	3.3	43
5	Nitrogen isotope analysis of aqueous ammonium and nitrate by membrane inlet isotope ratio mass spectrometry (MIRMS) at natural abundance levels. Rapid Communications in Mass Spectrometry, 2021, 35, e9077.	1.5	6
6	N ₂ and N ₂ O mitigation potential of replacing maize with the perennial biomass crop <i>Silphium perfoliatum</i> —An incubation study. GCB Bioenergy, 2021, 13, 1649-1665.	5.6	12
7	Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N ₂ O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions. Biogeosciences, 2021, 18, 4629-4650.	3.3	10
8	Evaluation of denitrification and decomposition from three biogeochemical models using laboratory measurements of N ₂ , N ₂ O and CO ₂ . Biogeosciences, 2021, 18, 5681-5697.	3.3	5
9	Combined application of organic manure with urea does not alter the dominant biochemical pathway producing N2O from urea treated soil. Biology and Fertility of Soils, 2020, 56, 331-343.	4.3	14
10	Seasonally distinct sources of N2O in acid organic soil drained for agriculture as revealed by N2O isotopomer analysis. Biogeochemistry, 2020, 147, 15-33.	3.5	13
11	Regulation of the product stoichiometry of denitrification in intensively managed soils. Food and Energy Security, 2020, 9, e251.	4.3	7
12	Nitrite induced transcription of p450nor during denitrification by Fusarium oxysporum correlates with the production of N2O with a high 15N site preference. Soil Biology and Biochemistry, 2020, 151, 108043.	8.8	12
13	Biologically mediated release of endogenous N2O and NO2 gases in a hydrothermal, hypoxic subterranean environment. Science of the Total Environment, 2020, 747, 141218.	8.0	21
14	Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N2O emission. Agriculture, Ecosystems and Environment, 2020, 298, 106975.	5.3	9
15	Maize root and shoot litter quality controls short-term CO ₂ and N ₂ O emissions and bacterial community structure of arable soil. Biogeosciences, 2020, 17, 1181-1198.	3.3	20
16	Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification. Plant and Soil, 2020, 448, 509-522.	3.7	18
17	The ¹⁵ N gas-flux method to determine N ₂ flux: a comparison of different tracer addition approaches. Soil, 2020, 6, 145-152.	4.9	9
18	N ₂ O isotope approaches for source partitioning of N ₂ O production and estimation of N ₂ O reduction – validation with the ¹⁵ N gas-flux method in laboratory and field studies. Biogeosciences, 2020, 17, 5513-5537.	3.3	28

#	Article	IF	CITATIONS
19	Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: Model evaluation and uncertainty analysis. Environmental Research, 2019, 179, 108806.	7.5	46
20	Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon. ISME Journal, 2019, 13, 2633-2638.	9.8	35
21	Underestimation of denitrification rates from field application of the ¹⁵ N gas flux method and its correction by gas diffusion modelling. Biogeosciences, 2019, 16, 2233-2246.	3.3	17
22	Improved isotopic model based on ¹⁵ N tracing and Rayleighâ€ŧype isotope fractionation for simulating differential sources of N ₂ O emissions in a clay grassland soil. Rapid Communications in Mass Spectrometry, 2019, 33, 449-460.	1.5	3
23	Improvement of the ¹⁵ N gas flux method for <i>in situ</i> measurement of soil denitrification and its product stoichiometry. Rapid Communications in Mass Spectrometry, 2019, 33, 437-448.	1.5	22
24	Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytologist, 2019, 221, 1398-1408.	7.3	46
25	The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biology and Biochemistry, 2018, 123, A3-A16.	8.8	293
26	Estimating N ₂ O processes during grassland renewal and grassland conversion to maize cropping using N ₂ O isotopocules. Rapid Communications in Mass Spectrometry, 2018, 32, 1053-1067.	1.5	42
27	Denitrification in Shallow Groundwater Below Different Arable Land Systems in a High Nitrogenâ€Loading Region. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 991-1004.	3.0	28
28	A new chamber design for measuring nitrous oxide emissions in maize crops. Journal of Plant Nutrition and Soil Science, 2018, 181, 69-77.	1.9	8
29	Straw amendment with nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: A case study of direct soil-born N2 measurements. Soil Biology and Biochemistry, 2018, 127, 301-304.	8.8	49
30	NO Reduction to N ₂ O Improves Nitrate ¹⁵ N Abundance Analysis by Membrane Inlet Quadrupole Mass Spectrometry. Analytical Chemistry, 2018, 90, 11216-11218.	6.5	8
31	Interaction of straw amendment and soil NO3â^' content controls fungal denitrification and denitrification product stoichiometry in a sandy soil. Soil Biology and Biochemistry, 2018, 126, 204-212.	8.8	61
32	Preliminary assessment of stable nitrogen and oxygen isotopic composition of USGS51 and USGS52 nitrous oxide reference gases and perspectives on calibration needs. Rapid Communications in Mass Spectrometry, 2018, 32, 1207-1214.	1.5	21
33	Legacy of medieval ridge and furrow cultivation on soil organic carbon distribution and stocks in forests. Catena, 2017, 154, 85-94.	5.0	15
34	Measuring ¹⁵ N Abundance and Concentration of Aqueous Nitrate, Nitrite, and Ammonium by Membrane Inlet Quadrupole Mass Spectrometry. Analytical Chemistry, 2017, 89, 6076-6081.	6.5	21
35	Use of oxygen isotopes to differentiate between nitrous oxide produced by fungi or bacteria during denitrification. Rapid Communications in Mass Spectrometry, 2017, 31, 1297-1312.	1.5	47
36	Soil mineral N dynamics and N 2 O emissions following grassland renewal. Agriculture, Ecosystems and Environment, 2017, 246, 325-342.	5.3	33

#	Article	IF	CITATIONS
37	Long term farming systems affect soils potential for N2O production and reduction processes under denitrifying conditions. Soil Biology and Biochemistry, 2017, 114, 31-41.	8.8	34
38	Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification. Soil Biology and Biochemistry, 2017, 104, 197-207.	8.8	98
39	Soil N2O fluxes and related processes in laboratory incubations simulating ammonium fertilizer depots. Soil Biology and Biochemistry, 2017, 104, 68-80.	8.8	53
40	Effect of soil saturation on denitrification in a grassland soil. Biogeosciences, 2017, 14, 4691-4710.	3.3	26
41	Quantifying N ₂ O reduction to N ₂ based on N ₂ O isotopocules – validation with independent methods (helium incubation and) Tj ETQq1 1 0.784314 rgBT /Over	ločk ³ 10 Tf	50 ¹¹⁶ 72 Td (8
42	Oxygen isotope fractionation during N ₂ O production by soil denitrification. Biogeosciences, 2016, 13, 1129-1144.	3.3	49
43	Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N _{2} 0 decomposition by microwave discharge . Rapid Communications in Mass Spectrometry, 2016, 30, 2635-2644.	1.5	15
44	Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports, 2016, 6, 39574.	3.3	65
45	Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry, 2016, 101, 6-19.	8.8	56
46	Influence of <i>Lumbricus terrestris</i> and <scp><i>Folsomia candida</i></scp> on N ₂ O formation pathways in two different soils – with particular focus on N ₂ emissions. Rapid Communications in Mass Spectrometry, 2016, 30, 2301-2314.	1.5	12
47	Deep ploughing increases agricultural soil organic matter stocks. Global Change Biology, 2016, 22, 2939-2956.	9.5	118
48	Greenhouse gas emissions after application of digestate: short-term effects of nitrification inhibitor and application technique effects. Archives of Agronomy and Soil Science, 2016, 62, 1007-1020.	2.6	10
49	Impact of CULTAN fertilization with ammonium sulfate on field emissions of nitrous oxide. Agriculture, Ecosystems and Environment, 2016, 219, 138-151.	5.3	29
50	Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biology and Biochemistry, 2016, 95, 1-7.	8.8	53
51	Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use. Ecology and Evolution, 2015, 5, 2556-2571.	1.9	6
52	Comparison of methods to determine triple oxygen isotope composition of N ₂ O. Rapid Communications in Mass Spectrometry, 2015, 29, 1991-1996.	1.5	8
53	Isotope fractionation factors controlling isotopocule signatures of soil-emitted N ₂ O produced by denitrification processes of various rates. Rapid Communications in Mass Spectrometry, 2015, 29, 269-282.	1.5	43
54	Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification – An N2O isotopomer case study. Soil Biology and Biochemistry, 2015, 84, 65-74.	8.8	57

#	Article	IF	CITATIONS
55	lsotopologue Ratios of N ₂ O and N ₂ Measurements Underpin the Importance of Denitrification in Differently N-Loaded Riparian Alder Forests. Environmental Science & Technology, 2014, 48, 11910-11918.	10.0	24
56	Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study. Rapid Communications in Mass Spectrometry, 2014, 28, 1893-1903.	1.5	71
57	Fungal oxygen exchange between denitrification intermediates and water. Rapid Communications in Mass Spectrometry, 2014, 28, 377-384.	1.5	15
58	lsotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME Journal, 2014, 8, 1115-1125.	9.8	143
59	Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils. Geochimica Et Cosmochimica Acta, 2014, 134, 55-73.	3.9	81
60	Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives. Rapid Communications in Mass Spectrometry, 2014, 28, 1995-2007.	1.5	89
61	Novel laser spectroscopic technique for continuous analysis of N ₂ O isotopomers – application and intercomparison with isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 216-222.	1.5	50
62	Comments on "A test of a fieldâ€based ¹⁵ Nâ€nitrous oxide pool dilution technique to measure gross N ₂ 0 production in soil†by Yang <i>etÂal</i> . (2011), <i>Global Change Biology</i> , 17, 3577–3588. Global Change Biology, 2013, 19, 133-135.	9.5	11
63	Soil denitrification potential and its influence on N ₂ 0 reduction and N ₂ 0 isotopomer ratios. Rapid Communications in Mass Spectrometry, 2013, 27, 2363-2373.	1.5	46
64	An enhanced technique for automated determination of ¹⁵ N signatures of N ₂ , (N ₂ +N ₂ O) and N ₂ O in gas samples. Rapid Communications in Mass Spectrometry, 2013, 27, 1548-1558.	1.5	44
65	An in-depth look into a tropical lowland forest soil: nitrogen-addition effects on the contents of N2O, CO2 and CH4 and N2O isotopic signatures down to 2-m depth. Biogeochemistry, 2012, 111, 695-713.	3.5	55
66	Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers?. Geochimica Et Cosmochimica Acta, 2012, 90, 265-282.	3.9	77
67	Effect of antecedent soil moisture conditions on emissions and isotopologue distribution of N2O during denitrification. Soil Biology and Biochemistry, 2011, 43, 240-250.	8.8	78
68	Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers. Soil Biology and Biochemistry, 2011, 43, 1671-1677.	8.8	62
69	Online measurement of denitrification rates in aquifer samples by an approach coupling an automated sampling and calibration unit to a membrane inlet mass spectrometry system. Rapid Communications in Mass Spectrometry, 2011, 25, 1993-2006.	1.5	7
70	Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions. Nutrient Cycling in Agroecosystems, 2009, 85, 299-312.	2.2	31
71	Estimation of Indirect Nitrous Oxide Emissions from a Shallow Aquifer in Northern Germany. Journal of Environmental Quality, 2009, 38, 2161-2171.	2.0	22
72	lsotopologue ratios of N2O emitted from microcosms with NH4+ fertilized arable soils under conditions favoring nitrification. Soil Biology and Biochemistry, 2008, 40, 2416-2426.	8.8	90

#	Article	IF	CITATIONS
73	Evaluation of septum-capped vials for storage of gas samples during air transport. Environmental Monitoring and Assessment, 2007, 136, 307-311.	2.7	29
74	Denitrification in the saturated zone of hydromorphic soils—laboratory measurement, regulating factors and stochastic modeling. Soil Biology and Biochemistry, 2005, 37, 1822-1836.	8.8	38
75	Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Communications in Mass Spectrometry, 2004, 18, 2036-2040.	1.5	94
76	A Proposed Method for Measuring Subsoil Denitrification In Situ. Soil Science Society of America Journal, 2002, 66, 507.	2.2	8
77	Laboratory evaluation of a new method for in situ measurement of denitrification in water-saturated soils. Soil Biology and Biochemistry, 1999, 31, 1109-1119.	8.8	31
78	Combination Probe for Nitrogen-15 Soil Labeling and Sampling of Soil Atmosphere to Measure Subsurface Denitrification Activity. Soil Science Society of America Journal, 1997, 61, 802-811.	2.2	11