Mei-Zhen Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9453251/publications.pdf

Version: 2024-02-01

		236925	254184
52	1,877	25	43
papers	citations	h-index	g-index
53	53	53	2544
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	LPA1-mediated PKD2 activation promotes LPA-induced tissue factor expression via the p38 \hat{l} ± and JNK2 MAPK pathways in smooth muscle cells. Journal of Biological Chemistry, 2021, 297, 101152.	3.4	3
2	Proapoptotic Mitochondrial Carrier Homolog Protein PSAP Mediates Death Receptor 6 Induced Apoptosis. Journal of Alzheimer's Disease, 2020, 74, 1097-1106.	2.6	8
3	Platelet CD40 Mediates Leukocyte Recruitment and Neointima Formation after Arterial Denudation Injury in Atherosclerosis-Prone Mice. American Journal of Pathology, 2018, 188, 252-263.	3.8	10
4	CRE and SRE mediate LPA-induced CCN1 transcription in mouse aortic smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2017, 95, 275-280.	1.4	4
5	Pen-2 and Presenilin are Sufficient to Catalyze Notch Processing. Journal of Alzheimer's Disease, 2017, 56, 1263-1269.	2.6	9
6	CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation. Journal of Biological Chemistry, 2017, 292, 14391-14400.	3.4	22
7	Lysophosphatidic Acid Triggers Apoptosis in HeLa Cells through the Upregulation of Tumor Necrosis Factor Receptor Superfamily Member 21. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	6
8	JNK1 Mediates Lipopolysaccharide-Induced CD14 and SR-AI Expression and Macrophage Foam Cell Formation. Frontiers in Physiology, 2017, 8, 1075.	2.8	11
9	Nicastrin is required for amyloid precursor protein (<scp>APP</scp>) but not Notch processing, while anterior pharynxâ€defective 1 is dispensable for processing of both <scp>APP</scp> and Notch. Journal of Neurochemistry, 2016, 136, 1246-1258.	3.9	10
10	Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3193-202.	7.1	62
11	Lysophosphatidic acid-induced vascular neointimal formation in mouse carotid arteries is mediated by the matricellular protein CCN1/Cyr61. American Journal of Physiology - Cell Physiology, 2016, 311, C975-C984.	4.6	16
12	<i>Potential therapeutics for myocardial ischemia-reperfusion injury</i> . Focus on "Induction of cardioprotection by small netrin-1-derived peptides― American Journal of Physiology - Cell Physiology, 2015, 309, C97-C99.	4.6	4
13	Cellular FLICE-like Inhibitory Protein (c-FLIP) and PS1-associated Protein (PSAP) Mediate Presenilin 1-induced γ-Secretase-dependent and -independent Apoptosis, Respectively. Journal of Biological Chemistry, 2015, 290, 18269-18280.	3.4	14
14	The Matricellular Protein Cyr61 Is a Key Mediator of Platelet-derived Growth Factor-induced Cell Migration. Journal of Biological Chemistry, 2015, 290, 8232-8242.	3.4	22
15	Matricellular Protein Cyr61 Bridges Lysophosphatidic Acid and Integrin Pathways Leading to Cell Migration. Journal of Biological Chemistry, 2014, 289, 5774-5783.	3.4	20
16	Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2014, 72, 9-19.	1.9	26
17	PSAP induces a unique Apaf-1 and Smac-dependent mitochondrial apoptotic pathway independent of Bcl-2 family proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 453-474.	3.8	19
18	Lysophosphatidic acid induces increased BACE1 expression and \hat{Al}^2 formation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 29-38.	3.8	30

#	Article	IF	CITATIONS
19	Histamine induces activation of protein kinase D that mediates tissue factor expression and activity in human aortic smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1344-H1352.	3.2	13
20	Death Receptor 6 Induces Apoptosis Not through Type I or Type II Pathways, but via a Unique Mitochondria-dependent Pathway by Interacting with Bax Protein. Journal of Biological Chemistry, 2012, 287, 29125-29133.	3.4	79
21	Lysophosphatidic Acid Induces Early Growth Response-1 (Egr-1) Protein Expression via Protein Kinase CÎ-regulated Extracellular Signal-regulated Kinase (ERK) and c-Jun N-terminal Kinase (JNK) Activation in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2012, 287, 22635-22642.	3.4	35
22	Penâ€2 is dispensable for endoproteolysis of presenilin 1, and nicastrinâ€Aph subcomplex is important for both γâ€secretase assembly and substrate recruitment. Journal of Neurochemistry, 2012, 123, 837-844.	3.9	13
23	Lysophosphatidic acid signaling in vascular smooth muscle cells. Journal of Clinical & Experimental Cardiology, 2012, 01, .	0.0	0
24	Lysophosphatidic acid effects on atherosclerosis and thrombosis. Clinical Lipidology, 2011, 6, 413-426.	0.4	49
25	LPA induces IL-6 secretion from aortic smooth muscle cells via an LPA ₁ -regulated, PKC-dependent, and p38î±-mediated pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H974-H983.	3.2	30
26	Distinct Cell Responses to Substrates Consisting of Poly($\hat{l}\mu$ -caprolactone) and Poly(propylene fumarate) in the Presence or Absence of Cross-Links. Biomacromolecules, 2010, 11, 2748-2759.	5.4	45
27	The GxxxG Motif in the Transmembrane Domain of Al̂2PP Plays an Essential Role in the Interaction of CTFl̂2 with the l̂3-secretase Complex and the Formation of Amyloid-l̂2. Journal of Alzheimer's Disease, 2009, 18, 167-176.	2.6	6
28	Lysophosphatidylcholine Activates a Novel PKD2-Mediated Signaling Pathway That Controls Monocyte Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1376-1382.	2.4	45
29	Residues at P2-P1 positions of É>- and ζ-cleavage sites are important in formation of \hat{I}^2 -amyloid peptide. Neurobiology of Disease, 2009, 36, 453-460.	4.4	2
30	Effects of γâ€secretase cleavageâ€region mutations on APP processing and Aβ formation: interpretation with sequential cleavage and αâ€helical model. Journal of Neurochemistry, 2008, 107, 722-733.	3.9	18
31	Both the N-terminal fragment and the protein–protein interaction domain (PDZ domain) are required for the pro-apoptotic activity of presenilin-associated protein PSAP. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 696-708.	2.4	9
32	Histamine Induces Egr-1 Expression in Human Aortic Endothelial Cells via the H1 Receptor-mediated Protein Kinase CÎ-dependent ERK Activation Pathway. Journal of Biological Chemistry, 2008, 283, 26928-26936.	3.4	34
33	Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA1, p42 and p38α. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 883-892.	2.4	76
34	The same \hat{l}^3 -secretase accounts for the multiple intramembrane cleavages of APP. Journal of Neurochemistry, 2007, 100, 1234-1246.	3.9	42
35	Lysophosphatidic Acid Induces Early Growth Response Gene 1 Expression in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1029-1035.	2.4	35
36	Calpain inhibitor MDL28170 modulates $\hat{Al^2}$ formation by inhibiting the formation of intermediate $\hat{Al^2}$ 46 and protecting $\hat{Al^2}$ from degradation. FASEB Journal, 2006, 20, 331-333.	0.5	24

#	Article	IF	CITATIONS
37	Activation of Protein Kinase Cζ by Peroxynitrite Regulates LKB1-dependent AMP-activated Protein Kinase in Cultured Endothelial Cells. Journal of Biological Chemistry, 2006, 281, 6366-6375.	3.4	161
38	\hat{I}^3 -Cleavage Is Dependent on \hat{I}^4 -Cleavage during the Proteolytic Processing of Amyloid Precursor Protein within Its Transmembrane Domain. Journal of Biological Chemistry, 2005, 280, 37689-37697.	3.4	120
39	Angiotensin II–Induced Protein Kinase D Activation Is Regulated by Protein Kinase Cδ and Mediated via the Angiotensin II Type 1 Receptor in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2271-2276.	2.4	26
40	Identification of a New Presenilin-dependent ζ-Cleavage Site within the Transmembrane Domain of Amyloid Precursor Protein. Journal of Biological Chemistry, 2004, 279, 50647-50650.	3.4	126
41	Oxidized lipoprotein regulation of tissue factor in smooth muscle cells. International Congress Series, 2004, 1262, 83-86.	0.2	0
42	Thrombin Rapidly Induces Protein Kinase D Phosphorylation, and Protein Kinase C δ Mediates the Activation. Journal of Biological Chemistry, 2003, 278, 2824-2828.	3.4	51
43	Lysophosphatidic Acid Induction of Tissue Factor Expression in Aortic Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 224-230.	2.4	45
44	The Novel Presenilin-1-associated Protein Is a Proapoptotic Mitochondrial Protein. Journal of Biological Chemistry, 2002, 277, 48913-48922.	3.4	54
45	Smooth muscle cell surface tissue factor pathway activation by oxidized low-density lipoprotein requires cellular lipid peroxidation. Blood, 2000, 96, 3056-3063.	1.4	50
46	Smooth muscle cell surface tissue factor pathway activation by oxidized low-density lipoprotein requires cellular lipid peroxidation. Blood, 2000, 96, 3056-3063.	1.4	0
47	Identification of a Novel PSD-95/Dlg/ZO-1 (PDZ)-like Protein Interacting with the C Terminus of Presenilin-1. Journal of Biological Chemistry, 1999, 274, 32543-32546.	3.4	44
48	LDL Increases Inactive Tissue Factor on Vascular Smooth Muscle Cell Surfaces. Circulation, 1999, 99, 1753-1759.	1.6	64
49	Native and Oxidized Low Density Lipoprotein Induction of Tissue Factor Gene Expression in Smooth Muscle Cells Is Mediated by Both Egr-1 and Sp1. Journal of Biological Chemistry, 1999, 274, 32795-32802.	3.4	76
50	Transcriptional Regulation of the Tissue Factor Gene in Human Epithelial Cells Is Mediated by Sp1 and EGR-1. Journal of Biological Chemistry, 1996, 271, 2731-2739.	3.4	143
51	The LIF response element of the $\hat{l}\pm 2$ macroglobulin gene confers LIF-induced transcriptional activation in embryonal stem cells. Cytokine, 1995, 7, 491-502.	3.2	25
52	Nucleotide Sequence of the Gene Encoding NADH Dehydrogenase from an Alkalophile, Bacillus sp. Strain YN-1. Journal of Biochemistry, 1991, 109, 678-683.	1.7	41