
Glenn D Flux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9452053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RADAR Guide: Standard Methods for Calculating Radiation Doses for Radiopharmaceuticals, Part 1—Collection of Data for Radiopharmaceutical Dosimetry. Journal of Nuclear Medicine, 2022, 63, 316-322.	5.0	7
2	RADAR Guide: Standard Methods for Calculating Radiation Doses for Radiopharmaceuticals, Part 2—Data Analysis and Dosimetry. Journal of Nuclear Medicine, 2022, 63, 485-492.	5.0	5
3	lodine-131 and Iodine-131-Meta-iodobenzylguanidine Dosimetry in Cancer Therapy. Seminars in Nuclear Medicine, 2022, 52, 167-177.	4.6	7
4	Second primary malignancies induced by radioactive iodine treatment of differentiated thyroid carcinoma — a critical review and evaluation of the existing evidence. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3247-3256.	6.4	11
5	SOLLID – a single centre study to develop methods to investigate the effects of low radiation doses within nuclear medicine, to enable multicentre epidemiological investigations. British Journal of Radiology, 2021, 94, 20200072.	2.2	1
6	Adjustment of the iodine ICRP population pharmacokinetic model for the use in thyroid cancer patients after thyroidectomy. Journal of Radiological Protection, 2021, 41, 1034-1044.	1.1	10
7	BNMS position statement on molecular radiotherapy. Nuclear Medicine Communications, 2021, 42, 1061-1063.	1.1	8
8	Comparison of 90Y SIRT predicted and delivered absorbed doses using a PSF conversion method. Physica Medica, 2021, 89, 1-10.	0.7	1
9	Applying radiobiology to clinical molecular radiotherapy. Nuclear Medicine and Biology, 2021, 100-101, 1-3.	0.6	3
10	A Systematic Review and Meta-Analysis of the Relationship Between the Radiation Absorbed Dose to the Thyroid and Response in Patients Treated with Radioiodine for Graves' Disease. Thyroid, 2021, 31, 1829-1838.	4.5	12
11	Differentiated thyroid cancer patients potentially benefitting from postoperative I-131 therapy: a review of the literature of the past decade. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 78-83.	6.4	52
12	Radioactive 3D printing for the production of molecular imaging phantoms. Physics in Medicine and Biology, 2020, 65, 175019.	3.0	12
13	Setting up a quantitative SPECT imaging network for a European multi-centre dosimetry study of radioiodine treatment for thyroid cancer as part of the MEDIRAD project. EJNMMI Physics, 2020, 7, 61.	2.7	23
14	EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 1311 mIBG treatment of neuroendocrine tumours. EJNMMI Physics, 2020, 7, 15.	2.7	44
15	Hybrid Imaging in conventional nuclear medicine. , 2020, , .		0
16	Spect perfusion imaging versus CT for predicting radiation injury to normal lung in lung cancer patients. British Journal of Radiology, 2019, 92, 20190184.	2.2	10
17	Compartmental Model for 223Ra-Dichloride in Patients With Metastatic Bone Disease From Castration-Resistant Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, 884-892.	0.8	20
18	Clinical trials in molecular radiotherapy—Tribulations and Triumphs Report of the NCRI CTRad meeting held at the Lift Islington, 8 June 2018. British Journal of Radiology, 2019, 92, 20190117.	2.2	1

GLENN D FLUX

#	Article	IF	CITATIONS
19	Investigating the potential clinical benefit of Selumetinib in resensitising advanced iodine refractory differentiated thyroid cancer to radioiodine therapy (SEL-I-METRY): protocol for a multicentre UK single arm phase II trial. BMC Cancer, 2019, 19, 582.	2.6	32
20	Controversies, Consensus, and Collaboration in the Use of ¹³¹ I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid, 2019, 29, 461-470.	4.5	257
21	Standardised quantitative radioiodine SPECT/CT Imaging for multicentre dosimetry trials in molecular radiotherapy. Physics in Medicine and Biology, 2019, 64, 245013.	3.0	37
22	Physics aspects of setting up a multicenter clinical trial involving internal dosimetry of radioiodine treatment of differentiated thyroid cancer. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2019, 63, 271-277.	0.7	15
23	Reply to â€~Single high dose versus repeated bone-targeted radionuclide therapy'. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 515-517.	6.4	0
24	Bone lesion absorbed dose profiles in patients with metastatic prostate cancer treated with molecular radiotherapy. British Journal of Radiology, 2018, 91, 20170795.	2.2	9
25	EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2456-2474.	6.4	124
26	Dosimetry-based treatment for Graves' disease. Nuclear Medicine Communications, 2018, 39, 486-492.	1.1	16
27	Comparison of Empiric Versus Dosimetry-Guided Radioiodine Therapy: The Devil Is in the Details. Journal of Nuclear Medicine, 2017, 58, 862-862.	5.0	8
28	SELIMETRY—a multicentre I-131 dosimetry trial: a clinical perspective. British Journal of Radiology, 2017, 90, 20160637.	2.2	27
29	Objective comparison of lesion detectability in low and medium-energy collimator iodine-123 mIBG images using a channelized Hotelling observer. Physics in Medicine and Biology, 2017, 62, 17-30.	3.0	4
30	The potential of 223Ra and 18F-fluoride imaging to predict bone lesion response to treatment with 223Ra-dichloride in castration-resistant prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1832-1844.	6.4	66
31	Phase I/II trials of 186Re-HEDP in metastatic castration-resistant prostate cancer: post-hoc analysis of the impact of administered activity and dosimetry on survival. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 620-629.	6.4	18
32	Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Physics, 2017, 4, 28.	2.7	65
33	Biologically effective dose in fractionated molecular radiotherapy—application to treatment of neuroblastoma with131I-mIBG. Physics in Medicine and Biology, 2016, 61, 2532-2551.	3.0	9
34	Wholeâ€remnant and maximumâ€voxel SPECT/CT dosimetry in ¹³¹ lâ€Nal treatments of differentiated thyroid cancer. Medical Physics, 2016, 43, 5279-5287.	3.0	19
35	Abdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT. EJNMMI Physics, 2016, 3, 17.	2.7	57
36	Pre-clinical quantitative imaging and mouse-specific dosimetry for 1111n-labelled radiotracers. EJNMMI Research, 2016, 6, 85.	2.5	2

GLENN D FLUX

#	Article	IF	CITATIONS
37	Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with ¹³¹ lâ€metaiodobenzylguanidine with implications for the activity to administer. Medical Physics, 2015, 42, 3969-3978.	3.0	15
38	EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1126-1134.	6.4	117
39	Radionuclide Metabolic Therapy. , 2013, , .		0
40	A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 270-275.	6.4	87
41	EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1238-1250.	6.4	217
42	Effect of Patient Morphology on Dosimetric Calculations for Internal Irradiation as Assessed by Comparisons of Monte Carlo Versus Conventional Methodologies. Journal of Nuclear Medicine, 2009, 50, 316-323.	5.0	53
43	Whole-Body Dosimetry for Individualized Treatment Planning of ¹³¹ I-MIBG Radionuclide Therapy for Neuroblastoma. Journal of Nuclear Medicine, 2009, 50, 1518-1524.	5.0	78
44	Optimization and assessment of quantitative 124I imaging on a Philips Gemini dual GS PET/CT system. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1037-1048.	6.4	29
45	EANM procedure guidelines for 1311-meta-iodobenzylguanidine (1311-mIBG) therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1039-1047.	6.4	212
46	Dosimetry for Fractionated 1311-mIBG Therapies in Patients with Primary Resistant High-Risk Neuroblastoma: Preliminary Results. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 105-112.	1.0	53
47	Optimization of Equipment and Methodology for Whole Body Activity Retention Measurements in Children Undergoing Targeted Radionuclide Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 243-249.	1.0	19
48	The Impact of PET and SPECT on Dosimetry for Targeted Radionuclide Therapy. Zeitschrift Fur Medizinische Physik, 2006, 16, 47-59.	1.5	107
49	Spatial aspects of combined modality radiotherapy. Radiotherapy and Oncology, 2005, 77, 301-309.	0.6	11
50	Whole-Body Dosimetry for Targeted Radionuclide Therapy Using Spectral Analysis. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 66-71.	1.0	5
51	Feasibility of Dosimetry-Based High-Dose 131I-Meta-Iodobenzylguanidine with Topotecan as a Radiosensitizer in Children with Metastatic Neuroblastoma. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 195-199.	1.0	132
52	Absorbed Dose Ratios for Repeated Therapy of Neuroblastoma with I-131 mIBG. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 81-87.	1.0	21
53	Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Physics in Medicine and Biology, 2002, 47, 3211-3223.	3.0	41