William Wisden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9451954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Family of AMPA-Selective Clutamate Receptors. Science, 1990, 249, 556-560.	12.6	1,489
2	Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science, 1990, 249, 1580-1585.	12.6	1,260
3	Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron, 1990, 4, 603-614.	8.1	657
4	Structural and functional basis for GABAA receptor heterogeneity. Nature, 1988, 335, 76-79.	27.8	607
5	Glutamate-operated channels: Developmentally early and mature forms arise by alternative splicing. Neuron, 1991, 6, 799-810.	8.1	546
6	Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science, 1990, 248, 1237-1240.	12.6	542
7	Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance. Nature, 2001, 409, 88-92.	27.8	530
8	The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron, 1992, 8, 775-785.	8.1	514
9	Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature, 1991, 351, 742-744.	27.8	448
10	Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science, 1992, 256, 1566-1570.	12.6	410
11	Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3561-3566.	7.1	368
12	The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Letters, 1993, 315, 318-322.	2.8	308
13	Mammalian ionotropic glutamate receptors. Current Opinion in Neurobiology, 1993, 3, 291-298.	4.2	295
14	Function and pharmacology of multiple GABAA receptor subunits. Trends in Pharmacological Sciences, 1991, 12, 49-51.	8.7	280
15	Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nature Neuroscience, 2009, 12, 1042-1049.	14.8	268
16	Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nature Neuroscience, 2011, 14, 297-299.	14.8	254
17	GABAA receptor channels: from subunits to functional entities. Current Opinion in Neurobiology, 1992, 2, 263-269.	4.2	249
18	Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor α4 subunit. FEBS Letters, 1991, 289, 227-230.	2.8	241

#	Article	IF	CITATIONS
19	GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nature Neuroscience, 2001, 4, 908-916.	14.8	217
20	Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nature Neuroscience, 2015, 18, 553-561.	14.8	210
21	GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nature Neuroscience, 2019, 22, 106-119.	14.8	188
22	Interleukin (IL)-4–independent Induction of Immunoglobulin (Ig)E, and Perturbation of  T Cell Development in Transgenic Mice Expressing IL-13. Journal of Experimental Medicine, 1998, 188, 399-404.	8.5	175
23	Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO Journal, 2008, 27, 179-187.	7.8	168
24	Distinct GABAA receptor α subunit mRNAs show differential patterns of expression in bovine brain. Neuron, 1988, 1, 937-947.	8.1	163
25	The GABAA Receptor Family: Molecular and Functional Diversity. Cold Spring Harbor Symposia on Quantitative Biology, 1990, 55, 29-40.	1.1	141
26	Wakefulness Is Governed by GABA and Histamine Cotransmission. Neuron, 2015, 87, 164-178.	8.1	136
27	High-affinity kainate a domoate receptors in rat brain. FEBS Letters, 1992, 307, 139-143.	2.8	128
28	Molecular biology of glutamate receptors. Progress in Neurobiology, 1994, 42, 353-357.	5.7	124
29	Modifying the Subunit Composition of TASK Channels Alters the Modulation of a Leak Conductance in Cerebellar Granule Neurons. Journal of Neuroscience, 2005, 25, 11455-11467.	3.6	124
30	A Role for TASK-1 (KCNK3) Channels in the Chemosensory Control of Breathing. Journal of Neuroscience, 2008, 28, 8844-8850.	3.6	124
31	The Cerebellum: a Model System for Studying GABA A Receptor Diversity. Neuropharmacology, 1996, 35, 1139-1160.	4.1	121
32	The Temperature Dependence of Sleep. Frontiers in Neuroscience, 2019, 13, 336.	2.8	119
33	Sleep deprivation and stress: a reciprocal relationship. Interface Focus, 2020, 10, 20190092.	3.0	118
34	Altered Activity in the Central Medial Thalamus Precedes Changes in the Neocortex during Transitions into Both Sleep and Propofol Anesthesia. Journal of Neuroscience, 2014, 34, 13326-13335.	3.6	115
35	Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience, 2000, 99, 205-216.	2.3	110
36	TASK-3 Two-Pore Domain Potassium Channels Enable Sustained High-Frequency Firing in Cerebellar Granule Neurons. Journal of Neuroscience, 2007, 27, 9329-9340.	3.6	109

#	Article	IF	CITATIONS
37	The third gamma subunit of the gamma-aminobutyric acid type A receptor family Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1433-1437.	7.1	108
38	From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nature Neuroscience, 2007, 10, 923-929.	14.8	108
39	Glutamate receptor expression in the rat retina. Neuroscience Letters, 1992, 138, 179-182.	2.1	104
40	Alterations in the expression of GABAAreceptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene. European Journal of Neuroscience, 1999, 11, 1685-1697.	2.6	103
41	GABAA receptors: structure and function in the basal ganglia. Progress in Brain Research, 2007, 160, 21-41.	1.4	102
42	A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus. Current Biology, 2018, 28, 2263-2273.e4.	3.9	99
43	Distribution of CABAA receptor subunit mRNAs in rat lumbar spinal cord. Molecular Brain Research, 1991, 10, 179-183.	2.3	95
44	TASK-3 Knockout Mice Exhibit Exaggerated Nocturnal Activity, Impairments in Cognitive Functions, and Reduced Sensitivity to Inhalation Anesthetics. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 924-934.	2.5	95
45	GABAergic Inhibition of Histaminergic Neurons Regulates Active Waking But Not the Sleep–Wake Switch or Propofol-Induced Loss of Consciousness. Journal of Neuroscience, 2012, 32, 13062-13075.	3.6	89
46	GABA _A -receptor Subtypes: Clinical Efficacy and Selectivity of Benzodiazepine Site Ligands. Annals of Medicine, 1997, 29, 275-282.	3.8	86
47	Cerebellar granule-cell-specific GABAAreceptors attenuate benzodiazepine-induced ataxia: evidence from α6-subunit-deficient mice. European Journal of Neuroscience, 1999, 11, 233-240.	2.6	82
48	The in Vivo Contributions of TASK-1-Containing Channels to the Actions of Inhalation Anesthetics, the α2 Adrenergic Sedative Dexmedetomidine, and Cannabinoid Agonists. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 615-626.	2.5	82
49	Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol, 2007, 41, 163-176.	1.7	81
50	An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17546-17551.	7.1	80
51	Circadian Factor BMAL1 in Histaminergic Neurons Regulates Sleep Architecture. Current Biology, 2014, 24, 2838-2844.	3.9	74
52	Raising cytosolic Cl ^{â^'} in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO Journal, 2012, 31, 1217-1230.	7.8	73
53	Gene expression in striatal grafts—I. Cellular localization of neurotransmitter mRNAs. Neuroscience, 1990, 34, 675-686.	2.3	72
54	Histamine: neural circuits and new medications. Sleep, 2019, 42, .	1.1	71

#	Article	IF	CITATIONS
55	Distinct regional expression of nicotinic acetylcholine receptor genes in chick brain. Molecular Brain Research, 1990, 7, 305-315.	2.3	70
56	Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor Î ³ 2 subunit. Neuropharmacology, 2004, 47, 17-34.	4.1	70
57	Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience, 2008, 151, 1154-1172.	2.3	70
58	Galanin Neurons Unite Sleep Homeostasis and α2-Adrenergic Sedation. Current Biology, 2019, 29, 3315-3322.e3.	3.9	66
59	Prominent Dendritic Localization in Forebrain Neurons of a Novel mRNA and Its Product, Dendrin. Molecular and Cellular Neurosciences, 1997, 8, 367-374.	2.2	65
60	Excitatory Pathways from the Lateral Habenula Enable Propofol-Induced Sedation. Current Biology, 2018, 28, 580-587.e5.	3.9	65
61	Ectopic expression of the GABAA receptor α6 subunit in hippocampal pyramidal neurons produces extrasynaptic receptors and an increased tonic inhibition. Neuropharmacology, 2002, 43, 530-549.	4.1	63
62	Long-Range Interactions in Neuronal Gene Expression: Evidence from Gene Targeting in the GABAA Receptor l²2–α6–α1–γ2 Subunit Gene Cluster. Molecular and Cellular Neurosciences, 2000, 16, 34-41.	2.2	61
63	Cloning and characterization of the rat 5-HT5B receptor. FEBS Letters, 1993, 333, 25-31.	2.8	60
64	Cerebellar γ-Aminobutyric Acid Type A Receptors: Pharmacological Subtypes Revealed by Mutant Mouse Lines. Molecular Pharmacology, 1997, 52, 380-388.	2.3	59
65	Localization of GABAA receptor α-subunit mRNAs in relation to receptor subtypes. Molecular Brain Research, 1989, 5, 305-310.	2.3	58
66	The Contribution of TWIK-Related Acid-Sensitive K+-Containing Channels to the Function of Dorsal Lateral Geniculate Thalamocortical Relay Neurons. Molecular Pharmacology, 2006, 69, 1468-1476.	2.3	58
67	Dual-transmitter systems regulating arousal, attention, learning and memory. Neuroscience and Biobehavioral Reviews, 2018, 85, 21-33.	6.1	55
68	Sleep and thermoregulation. Current Opinion in Physiology, 2020, 15, 7-13.	1.8	54
69	Cerebellar granule cell Cre recombinase expression. Genesis, 2003, 36, 97-103.	1.6	53
70	Differential distribution of GABAA receptor mRNAs in bovine cerebellum — Localization of α2 mRNA in Bergmann glia layer. Neuroscience Letters, 1989, 106, 7-12.	2.1	52
71	Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus. Nature Communications, 2016, 7, 13579.	12.8	52
72	Flip and Flop Variants of AMPA Receptors in the Rat Lumbar Spinal Cord. European Journal of Neuroscience, 1995, 7, 1414-1419.	2.6	49

#	Article	IF	CITATIONS
73	Expression of GABAA receptor subunits in rat brainstem auditory pathways: cochlear nuclei, superior olivary complex and nucleus of the lateral lemniscus. Neuroscience, 2001, 102, 625-638.	2.3	48
74	GABA Receptors and the Pharmacology of Sleep. Handbook of Experimental Pharmacology, 2017, 253, 279-304.	1.8	48
75	Localization of preprogalanin mRNA in rat brain: In situ hybridization study with a synthetic oligonucleotide probe. Neuroscience Letters, 1990, 114, 241-247.	2.1	46
76	The chicken GABAA receptor α1 subunit: cDNA sequence and localization of the corresponding mRNA. Molecular Brain Research, 1991, 9, 333-339.	2.3	45
77	Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABAA receptor Î ³ 2 subunit. Biochemical Pharmacology, 2004, 68, 1621-1629.	4.4	45
78	The role of K2P channels in anaesthesia and sleep. Pflugers Archiv European Journal of Physiology, 2015, 467, 907-916.	2.8	45
79	Directing gene expression to cerebellar granule cells using Â-aminobutyric acid type A receptor Â6 subunit transgenes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9417-9421.	7.1	43
80	Synaptic Transmission and Plasticity at Inputs to Murine Cerebellar Purkinje Cells Are Largely Dispensable for Standard Nonmotor Tasks. Journal of Neuroscience, 2013, 33, 12599-12618.	3.6	42
81	Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Frontiers in Neural Circuits, 2018, 12, 4.	2.8	38
82	Characterization of a Cerebellar Granule Cell-Specific Gene Encoding the Î ³ -Aminobutyric Acid Type A Receptor α6 Subunit. Journal of Neurochemistry, 2002, 67, 907-916.	3.9	36
83	A specific circuit in the midbrain detects stress and induces restorative sleep. Science, 2022, 377, 63-72.	12.6	36
84	Loss of zolpidem efficacy in the hippocampus of mice with the GABAAreceptor γ2 F77I point mutation. European Journal of Neuroscience, 2005, 21, 3002-3016.	2.6	35
85	Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons. Journal of Neuroscience, 2016, 36, 11171-11184.	3.6	34
86	The inescapable drive to sleep: Overlapping mechanisms of sleep and sedation. Science, 2021, 374, 556-559.	12.6	34
87	Removal of GABAA Receptor $\hat{1}^3$ 2 Subunits from Parvalbumin Neurons Causes Wide-Ranging Behavioral Alterations. PLoS ONE, 2011, 6, e24159.	2.5	33
88	Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Molecular Psychiatry, 2021, 26, 5213-5228.	7.9	31
89	In situ hybridization with oligonucleotide probes. International Review of Neurobiology, 2002, 47, 3-59.	2.0	29
90	Expression of the kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience, 2010, 167, 758-764.	2.3	28

#	Article	IF	CITATIONS
91	Staying awake – a genetic region that hinders α ₂ adrenergic receptor agonistâ€induced sleep. European Journal of Neuroscience, 2014, 40, 2311-2319.	2.6	28
92	Towards better benzodiazepines. Nature, 1999, 401, 751-752.	27.8	27
93	Transgenic methods for directing gene expression to specific neuronal types: cerebellar granule cells. Progress in Brain Research, 2000, 124, 69-80.	1.4	27
94	Neuregulin Signaling Is Dispensable for NMDA- and GABAA-Receptor Expression in the Cerebellum In Vivo. Journal of Neuroscience, 2009, 29, 2404-2413.	3.6	27
95	Ro 15-4513 Antagonizes Alcohol-Induced Sedation in Mice Through αβγ2-type GABAA Receptors. Frontiers in Neuroscience, 2011, 5, 3.	2.8	26
96	DNA repair in post-mitotic neurons: a gene-trapping strategy. Cell Death and Differentiation, 2005, 12, 307-309.	11.2	25
97	Conservation of γ-Aminobutyric Acid Type A Receptor α6 Subunit Gene Expression in Cerebellar Granule Cells. Journal of Neurochemistry, 2002, 66, 1810-1818.	3.9	24
98	Agonistic effects of the β-carboline DMCM revealed in GABAA receptor γ2 subunit F77I point-mutated mice. Neuropharmacology, 2005, 48, 469-478.	4.1	24
99	Behavioural correlates of an altered balance between synaptic and extrasynaptic GABAAergic inhibition in a mouse model. European Journal of Neuroscience, 2004, 20, 2168-2178.	2.6	23
100	K+ Channel TASK-1 Knockout Mice Show Enhanced Sensitivities to Ataxic and Hypnotic Effects of GABAA Receptor Ligands. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 277-286.	2.5	23
101	Characterization of the rat hippocalcin gene: the 5′ flanking region directs expression to the hippocampus. Neuroscience, 1996, 75, 1099-1115.	2.3	22
102	Studying cerebellar circuits by remote control of selected neuronal types with GABA-A receptors. Frontiers in Molecular Neuroscience, 2009, 2, 29.	2.9	22
103	Dissecting neural circuitry by combining genetics and pharmacology. Trends in Neurosciences, 2005, 28, 44-50.	8.6	21
104	Somato-synaptic variation of GABAA receptors in cultured murine cerebellar granule cells: investigation of the role of the α6 subunit. Neuropharmacology, 2000, 39, 1495-1513.	4.1	19
105	Genetic lesioning of histamine neurons increases sleep–wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Sleep, 2019, 42, .	1.1	17
106	Lymphomagenesis, Hydronephrosis, and Autoantibodies Result from Dysregulation of IL-9 and Are Differentially Dependent on Th2 Cytokines. Journal of Immunology, 2004, 173, 113-122.	0.8	16
107	Synaptic Competition Sculpts the Development of GABAergic Axo-Dendritic but Not Perisomatic Synapses. PLoS ONE, 2013, 8, e56311.	2.5	15
108	nNOS-Expressing Neurons in the Ventral Tegmental Area and Substantia Nigra Pars Compacta. ENeuro, 2018, 5, ENEURO.0381-18.2018.	1.9	14

#	Article	IF	CITATIONS
109	γ-Aminobutyric acid type A receptor subunit assembly and sorting: gene targeting and cell biology approaches. Biochemical Society Transactions, 1997, 25, 820-824.	3.4	13
110	The intrinsic specification of Î ³ -aminobutyric acid type A receptor α6 subunit gene expression in cerebellar granule cells. European Journal of Neuroscience, 1999, 11, 2194-2198.	2.6	13
111	NMDA Receptors in the Lateral Preoptic Hypothalamus Are Essential for Sustaining NREM and REM Sleep. Journal of Neuroscience, 2022, 42, 5389-5409.	3.6	12
112	Blunted Furosemide Action On Cerebellar GABA A Receptors In ANT Rats Selectively Bred for High Alcohol Sensitivity. Neuropharmacology, 1996, 35, 1493-1502.	4.1	11
113	Structure and Distribution of Multiple GABAA Receptor Subunits with Special Reference to the Cerebelluma. Annals of the New York Academy of Sciences, 1995, 757, 506-515.	3.8	10
114	Cellular localisation of somatostatin mRNA and neuropeptide Y mRNA in foetal striatal tissue grafts. Neuroscience Letters, 1989, 103, 121-126.	2.1	9
115	Loreclezole and La3+ differentiate cerebellar granule cell GABAA receptor subtypes. European Journal of Pharmacology, 1999, 367, 101-105.	3.5	9
116	Differential distribution in bovine brain of distinct γ-aminobutyric acidA receptor α-subunit mRNAs. Biochemical Society Transactions, 1989, 17, 566-567.	3.4	7
117	Modulation of GABA A receptor function and sleep. Current Opinion in Physiology, 2018, 2, 51-57.	1.8	7
118	Disruption of VGLUT1 in Cholinergic Medial Habenula Projections Increases Nicotine Self-Administration. ENeuro, 2022, 9, ENEURO.0481-21.2021.	1.9	7
119	Actions of two GABAA receptor benzodiazepine-site ligands that are mediated via non-γ2-dependent modulation. European Journal of Pharmacology, 2011, 666, 111-121.	3.5	6
120	Cytoplasmic domain of δ subunit is important for the extra-synaptic targeting of GABA _A receptor subtypes. Journal of Integrative Neuroscience, 2014, 13, 617-631.	1.7	6
121	Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABAA Receptor γ2 Subunit in the Cerebellum. Frontiers in Pharmacology, 2016, 7, 403.	3.5	6
122	Chapter 49 Cellular localisation of neurotransmitter mRNAs in striatal grafts. Progress in Brain Research, 1990, 82, 433-439.	1.4	5
123	In situhybridization with oligonucleotides: a simplified method to detectDrosophilatranscripts. Nucleic Acids Research, 1991, 19, 3746-3746.	14.5	5
124	Gamma-aminobutyric acidA-receptor messenger ribonucleic acid (alpha-1 subunit) detection by in situ hybridization. European Archives of Oto-Rhino-Laryngology, 1994, 251, 61-4.	1.6	5
125	DNA regions supporting hippocalcin gene expression in cell lines. Molecular Brain Research, 1997, 52, 323-325.	2.3	5
126	Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different Î ³ Subunits. Frontiers in Cellular Neuroscience, 2017, 11, 95.	3.7	5

#	Article	IF	CITATIONS
127	Nitric Oxide Synthase Neurons in the Preoptic Hypothalamus Are NREM and REM Sleep-Active and Lower Body Temperature. Frontiers in Neuroscience, 2021, 15, 709825.	2.8	5
128	A Tribute to Peter H Seeburg (1944–2016): A Founding Father of Molecular Neurobiology. Frontiers in Molecular Neuroscience, 2016, 9, 133.	2.9	4
129	Brain Clocks, Sleep, and Mood. Advances in Experimental Medicine and Biology, 2021, 1344, 71-86.	1.6	4
130	The stillness of sleep. Science, 2020, 367, 366-367.	12.6	3
131	Cre-ating Ways to Serotonin. Frontiers in Neuroscience, 2010, 4, 167.	2.8	2
132	The De-Scent of Sexuality: Should We Smell a Rat?. Archives of Sexual Behavior, 2021, 50, 2283-2288.	1.9	2
133	Introduction: Studying gene expression in neural tissues by in situ hybridization. International Review of Neurobiology, 2002, 47, xvii-xxi.	2.0	1
134	GABAA Receptors: Molecular Biology, Cell Biology, and Pharmacology. , 2009, , 463-470.		1
135	Genetic techniques and circuit analysis. Frontiers in Molecular Neuroscience, 2010, 3, 4.	2.9	1
136	Insights into GABAA receptors receptor complexity from the study of cerebellar granule cells. Pharmaceutical Science Series, 2001, , 189-201.	0.0	1
137	Localization and modulation of Galanin mRNA in rat brain: effect of reserpine treatment on locus coendeus neurones. European Journal of Pharmacology, 1990, 183, 496.	3.5	0
138	Establishing a new mouse model for investigating the function of amygdala neurons in anxiety. BMC Pharmacology, 2008, 8, A35.	0.4	0
139	S.1.02 Engineering receptor subtypes as tools in neuropsychopharmacology. European Neuropsychopharmacology, 2009, 19, S2-S3.	0.7	0
140	P.1.22 Selective modulation of parvalbumin GABAergic interneuron function in-vivo in mice. European Neuropsychopharmacology, 2009, 19, S20-S21.	0.7	0
141	A Miniature Neural Recording Device to Investigate Sleep and Temperature Regulation in Mice. , 2019, , .		0
142	The Structure and Expression of the GABAA Receptor as Deduced by Molecular Genetic Studies. , 1989, , 83-99.		0
143	Molecular Biology of Glutamate-Gated Channels: Focus on AMPA and Kainate. , 1991, , 17-41.		0