
Michael Matschiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9451211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supergene origin and maintenance in Atlantic cod. Nature Ecology and Evolution, 2022, 6, 469-481.	7.8	46
2	Efficient ancestry and mutation simulation with msprime 1.0. Genetics, 2022, 220, .	2.9	133
3	Dsuite ―Fast <i>D</i> â€statistics and related admixture evidence from VCF files. Molecular Ecology Resources, 2021, 21, 584-595.	4.8	356
4	Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature, 2021, 589, 76-81.	27.8	151
5	Divergence and hybridization in sea turtles: Inferences from genome data show evidence of ancient gene flow between species. Molecular Ecology, 2021, 30, 6178-6192.	3.9	24
6	Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Science Advances, 2021, 7, eabe8215.	10.3	33
7	Museum specimens tell the history of rhinoceroses. Cell, 2021, 184, 4841-4842.	28.9	1
8	Estimating uncertainty in divergence times among three-spined stickleback clades using the multispecies coalescent. Molecular Phylogenetics and Evolution, 2020, 142, 106646.	2.7	31
9	The genomic timeline of cichlid fish diversification across continents. Nature Communications, 2020, 11, 5895.	12.8	41
10	Stable species boundaries despite ten million years of hybridization in tropical eels. Nature Communications, 2020, 11, 1433.	12.8	53
11	Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9431-9439.	7.1	93
12	Gondwanan vicariance or trans-Atlantic dispersal of cichlid fishes: a review of the molecular evidence. Hydrobiologia, 2019, 832, 9-37.	2.0	23
13	A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biology and Evolution, 2019, 11, 3291-3308.	2.5	54
14	Vision using multiple distinct rod opsins in deep-sea fishes. Science, 2019, 364, 588-592.	12.6	151
15	Evolution: Genomic Signatures of Mimicry and Mimicry of Genomic Signatures. Current Biology, 2019, 29, R363-R365.	3.9	0
16	BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 2019, 15, e1006650.	3.2	2,484
17	Selective Sampling of Species and Fossils Influences Age Estimates Under the Fossilized Birth–Death Model. Frontiers in Genetics, 2019, 10, 1064.	2.3	25
18	Phylogenomics of an extra-Antarctic notothenioid radiation reveals a previously unrecognized lineage and diffuse species boundaries. BMC Evolutionary Biology, 2019, 19, 13.	3.2	18

MICHAEL MATSCHINER

#	Article	IF	CITATIONS
19	Ticket to spawn: Combining economic and genetic data to evaluate the effect of climate and demographic structure on spawning distribution in Atlantic cod. Global Change Biology, 2019, 25, 134-143.	9.5	23
20	Bayesian Divergence-Time Estimation with Genome-Wide Single-Nucleotide Polymorphism Data of Sea Catfishes (Ariidae) Supports Miocene Closure of the Panamanian Isthmus. Systematic Biology, 2018, 67, 681-699.	5.6	137
21	Variation and constraints in hybrid genome formation. Nature Ecology and Evolution, 2018, 2, 549-556.	7.8	69
22	The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes. Genome Biology and Evolution, 2018, 10, 1088-1103.	2.5	28
23	Millions of Years Behind: Slow Adaptation of Ruminants to Grasslands. Systematic Biology, 2018, 67, 145-157.	5.6	36
24	Bayesian Phylogenetic Estimation of Clade Ages Supports Trans-Atlantic Dispersal of Cichlid Fishes. Systematic Biology, 2017, 66, syw076.	5.6	86
25	Disentangling Incomplete Lineage Sorting and Introgression to Refine Species-Tree Estimates for Lake Tanganyika Cichlid Fishes. Systematic Biology, 2017, 66, syw069.	5.6	81
26	Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Scientific Data, 2017, 4, 160132.	5.3	67
27	Evolution of Hemoglobin Genes in Codfishes Influenced by Ocean Depth. Scientific Reports, 2017, 7, 7956.	3.3	22
28	Genomic Differentiation and Demographic Histories of Atlantic and Indo-Pacific Yellowfin Tuna (Thunnus albacares) Populations. Genome Biology and Evolution, 2017, 9, 1084-1098.	2.5	46
29	Evolution of the immune system influences speciation rates in teleost fishes. Nature Genetics, 2016, 48, 1204-1210.	21.4	226
30	Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika. Molecular Ecology, 2016, 25, 6143-6161.	3.9	68
31	Fitchi: haplotype genealogy graphs based on the Fitch algorithm. Bioinformatics, 2016, 32, 1250-1252.	4.1	35
32	Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes. Journal of Evolutionary Biology, 2015, 28, 376-394.	1.7	67
33	A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Molecular Phylogenetics and Evolution, 2015, 83, 56-71.	2.7	92
34	The Adaptive Radiation of Notothenioid Fishes in the Waters of Antarctica. , 2015, , 35-57.		18
35	Phylogenetic Position and Subspecies Divergence of the Endangered New Zealand Dotterel (Charadrius obscurus). PLoS ONE, 2013, 8, e78068.	2.5	27
36	Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica. Polar Biology, 2012, 35, 1073-1086.	1.2	44

#	Article	IF	CITATIONS
37	Fish migrate underground: the example of <i>Delminichthys adspersus</i> (Cyprinidae). Molecular Ecology, 2012, 21, 1658-1671.	3.9	21
38	Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Molecular Ecology, 2011, 20, 4707-4721.	3.9	68
39	On the Origin and Trigger of the Notothenioid Adaptive Radiation. PLoS ONE, 2011, 6, e18911.	2.5	115
40	TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics, 2009, 25, 1982-1983.	4.1	240
41	Gene flow by larval dispersal in the Antarctic notothenioid fish <i>Gobionotothen gibberifrons</i> . Molecular Ecology, 2009, 18, 2574-2587.	3.9	78