Thomas Rudel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9450881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innovative vaccine approaches—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1511, 59-86.	3.8	5
2	Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer. Journal of Tissue Engineering, 2022, 13, 204173142210885.	5.5	5
3	Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature, 2022, 605, 539-544.	27.8	23
4	Triple co-culture and perfusion bioreactor for studying the interaction between <i>Neisseria gonorrhoeae</i> and neutrophils: A novel 3D tissue model for bacterial infection and immunity. Journal of Tissue Engineering, 2021, 12, 204173142098880.	5.5	10
5	The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy. Frontiers in Cellular and Infection Microbiology, 2021, 11, 644750.	3.9	7
6	ldentification and initial characterization of a new pair of sibling sRNAs of Neisseria gonorrhoeae involved in type IV pilus biogenesis. Microbiology (United Kingdom), 2021, 167, .	1.8	1
7	Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells. PLoS Pathogens, 2021, 17, e1009874.	4.7	18
8	A Comprehensive Review on the Interplay between Neisseria spp. and Host Sphingolipid Metabolites. Cells, 2021, 10, 3201.	4.1	5
9	Advanced human mucosal tissue models are needed to improve preclinical testing of vaccines. PLoS Biology, 2021, 19, e3001462.	5.6	1
10	The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion. Cellular Microbiology, 2020, 22, e13136.	2.1	17
11	Folliculin Controls the Intracellular Survival and Trans-Epithelial Passage of Neisseria gonorrhoeae. Frontiers in Cellular and Infection Microbiology, 2020, 10, 422.	3.9	4
12	Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy. Nature Communications, 2020, 11, 6173.	12.8	43
13	Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nature Microbiology, 2020, 5, 1390-1402.	13.3	29
14	Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection. MBio, 2020, 11, .	4.1	7
15	Intracellular Staphylococcus aureus Perturbs the Host Cell Ca ²⁺ Homeostasis To Promote Cell Death. MBio, 2020, 11, .	4.1	20
16	A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae. Frontiers in Cellular and Infection Microbiology, 2020, 10, 215.	3.9	11
17	Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective. Frontiers in Cellular and Infection Microbiology, 2020, 10, 615450.	3.9	26
18	Biomimetic Human Tissue Model for Long-Term Study of Neisseria gonorrhoeae Infection. Frontiers in Microbiology, 2019, 10, 1740.	3.5	19

#	Article	IF	CITATIONS
19	Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection. Frontiers in Microbiology, 2019, 10, 2350.	3.5	15
20	Chlamydia trachomatis and human herpesvirus 6 infections in ovarian cancer—Casual or causal?. PLoS Pathogens, 2019, 15, e1008055.	4.7	4
21	Detection of Chlamydia Developmental Forms and Secreted Effectors by Expansion Microscopy. Frontiers in Cellular and Infection Microbiology, 2019, 9, 276.	3.9	31
22	Modulation of Host Cell Metabolism by <i>Chlamydia trachomatis</i> . Microbiology Spectrum, 2019, 7,	3.0	16
23	How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Frontiers in Cellular and Infection Microbiology, 2019, 9, 42.	3.9	149
24	<i>Chlamydia trachomatis</i> impairs host base excision repair by downregulating polymerase β. Cellular Microbiology, 2019, 21, e12986.	2.1	8
25	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
26	The role of host cell organelles in the development of Simkania negevensis. International Journal of Medical Microbiology, 2018, 308, 155-160.	3.6	2
27	Intracellular compartments of pathogens: Highways to hell or stairways to heaven?. International Journal of Medical Microbiology, 2018, 308, 1-2.	3.6	0
28	Inside job: Staphylococcus aureus host-pathogen interactions. International Journal of Medical Microbiology, 2018, 308, 607-624.	3.6	148
29	Cysts mark the early stage of metastatic tumor development in non-small cell lung cancer. Oncotarget, 2018, 9, 6518-6535.	1.8	5
30	Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli. Journal of Bacteriology, 2018, 200, .	2.2	15
31	HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation. Npj Genomic Medicine, 2018, 3, 25.	3.8	26
32	Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response. Nature Microbiology, 2018, 3, 824-835.	13.3	70
33	Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity. Frontiers in Cellular and Infection Microbiology, 2018, 8, 183.	3.9	9
34	Safe haven under constant attack-The <i>Chlamydia</i> -containing vacuole. Cellular Microbiology, 2018, 20, e12940.	2.1	9
35	<i>Chlamydia</i> preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission. Journal of Cell Biology, 2017, 216, 1071-1089.	5.2	102
36	Metabolic adaptation of <i>Chlamydia trachomatis</i> to mammalian host cells. Molecular Microbiology, 2017, 103, 1004-1019.	2.5	46

#	Article	IF	CITATIONS
37	Fragment and Conquer. Cell Host and Microbe, 2017, 22, 255-257.	11.0	1
38	Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chemico-Biological Interactions, 2017, 267, 96-103.	4.0	25
39	ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments. Scientific Reports, 2017, 7, 15567.	3.3	13
40	To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 316.	3.9	45
41	Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses. Frontiers in Immunology, 2017, 8, 1792.	4.8	14
42	Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. Microbiology (United Kingdom), 2017, 163, 1081-1092.	1.8	7
43	The sibling sRNAs NgncR_162 and NgncR_163 of Neisseria gonorrhoeae participate in the expression control of metabolic, transport and regulatory proteins. Microbiology (United Kingdom), 2017, 163, 1720-1734.	1.8	11
44	Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. ELife, 2017, 6, .	6.0	74
45	Chlamydia and mitochondria - an unfragmented relationship. Microbial Cell, 2017, 4, 233-235.	3.2	8
46	Natural mutations in a <i>Staphylococcus aureus</i> virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3101-10.	7.1	103
47	Proteomic analysis of the <i>Simkaniaâ€</i> containing vacuole: the central role of retrograde transport. Molecular Microbiology, 2016, 99, 151-171.	2.5	23
48	Inhibitors of macrophage infectivity potentiator-like PPIases affect neisserial and chlamydial pathogenicity. International Journal of Antimicrobial Agents, 2016, 48, 401-408.	2.5	23
49	Subversion of Cell-Autonomous Host Defense by Chlamydia Infection. Current Topics in Microbiology and Immunology, 2016, 412, 81-106.	1.1	17
50	Interaction of Chlamydiae with human macrophages. FEBS Journal, 2016, 283, 608-618.	4.7	34
51	Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes. PLoS Pathogens, 2016, 12, e1005857.	4.7	48
52	<scp><i>C</i></scp> <i>hlamydia</i> â€infected cells shed <scp>Gp</scp> 96 to prevent chlamydial reâ€infection. Molecular Microbiology, 2015, 98, 694-711.	2.5	11
53	Purification and proteomics of pathogen-modified vacuoles and membranes. Frontiers in Cellular and Infection Microbiology, 2015, 5, 48.	3.9	56
54	Inhibitory activities of the marine streptomycete-derived compound SF2446A2 against Chlamydia trachomatis and Schistosoma mansoni. Journal of Antibiotics, 2015, 68, 674-679.	2.0	40

#	Article	IF	CITATIONS
55	Antichlamydial Sterol from the Red Sea Sponge Callyspongia aff. implexa. Planta Medica, 2015, 81, 382-387.	1.3	27
56	EphrinA2 Receptor (EphA2) Is an Invasion and Intracellular Signaling Receptor for Chlamydia trachomatis. PLoS Pathogens, 2015, 11, e1004846.	4.7	99
57	Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of <i>Neisseria gonorrhoeae</i> . Cellular Microbiology, 2015, 17, 241-253.	2.1	26
58	Modulation of p53 during bacterial infections. Nature Reviews Microbiology, 2015, 13, 741-748.	28.6	40
59	GP96 Interacts with HHV-6 during Viral Entry and Directs It for Cellular Degradation. PLoS ONE, 2014, 9, e113962.	2.5	11
60	Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion. MBio, 2014, 5, e01802-14.	4.1	42
61	Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection. Cell Reports, 2014, 9, 918-929.	6.4	92
62	Cytoplasmic replication of <i>Staphylococcus aureus</i> upon phagosomal escape triggered by phenol-soluble modulin α. Cellular Microbiology, 2014, 16, 451-465.	2.1	160
63	Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Research, 2014, 42, 10579-10595.	14.5	74
64	The chlamydial organismSimkania negevensisforms ER vacuole contact sites and inhibits ER-stress. Cellular Microbiology, 2014, 16, 1224-1243.	2.1	50
65	C1orf163/RESA1 Is a Novel Mitochondrial Intermembrane Space Protein Connected to Respiratory Chain Assembly. Journal of Molecular Biology, 2014, 426, 908-920.	4.2	31
66	Structure of BamA, an essential factor in outer membrane protein biogenesis. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1779-1789.	2.5	83
67	Modulation of host signaling and cellular responses by Chlamydia. Cell Communication and Signaling, 2013, 11, 90.	6.5	30
68	Requirements for the import of neisserial Omp85 into the outer membrane of human mitochondria. Bioscience Reports, 2013, 33, e00028.	2.4	5
69	Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-Dependent Host Cell Signaling. PLoS Pathogens, 2013, 9, e1003373.	4.7	22
70	Reactivation of Chromosomally Integrated Human Herpesvirus-6 by Telomeric Circle Formation. PLoS Genetics, 2013, 9, e1004033.	3.5	64
71	Chlamydia trachomatis Infection Induces Replication of Latent HHV-6. PLoS ONE, 2013, 8, e61400.	2.5	44
72	Metabolic host responses to infection by intracellular bacterial pathogens. Frontiers in Cellular and Infection Microbiology, 2013, 3, 24.	3.9	169

#	Article	IF	CITATIONS
73	Sam50 Functions in Mitochondrial Intermembrane Space Bridging and Biogenesis of Respiratory Complexes. Molecular and Cellular Biology, 2012, 32, 1173-1188.	2.3	191
74	"Prohibitinâ€g CRAF/MAPK Activation with Rocaglamides. Chemistry and Biology, 2012, 19, 1077-1078.	6.0	6
75	To Die or Not to Die—Shigella Has an Answer. Cell Host and Microbe, 2012, 11, 219-221.	11.0	7
76	Imbalanced Oxidative Stress Causes Chlamydial Persistence during Non-Productive Human Herpes Virus Co-Infection. PLoS ONE, 2012, 7, e47427.	2.5	76
77	The transcriptional landscape of Chlamydia pneumoniae. Genome Biology, 2011, 12, R98.	9.6	72
78	HIF-1α is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells. Cellular Microbiology, 2011, 13, 1573-1585.	2.1	43
79	Neisserial Omp85 Protein Is Selectively Recognized and Assembled into Functional Complexes in the Outer Membrane of Human Mitochondria. Journal of Biological Chemistry, 2011, 286, 27019-27026.	3.4	28
80	Evolutionary Conservation of Infection-Induced Cell Death Inhibition among Chlamydiales. PLoS ONE, 2011, 6, e22528.	2.5	16
81	Interactions between bacterial pathogens and mitochondrial cell death pathways. Nature Reviews Microbiology, 2010, 8, 693-705.	28.6	142
82	Chlamydia trachomatis-infected host cells resist dsRNA-induced apoptosis. Cellular Microbiology, 2010, 12, 1340-1351.	2.1	17
83	Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Research, 2010, 38, 868-877.	14.5	206
84	Anaplasma phagocytophilum Ats-1 Is Imported into Host Cell Mitochondria and Interferes with Apoptosis Induction. PLoS Pathogens, 2010, 6, e1000774.	4.7	126
85	A Loss-of-Function Screen Reveals Ras- and Raf-Independent MEK-ERK Signaling During <i>Chlamydia trachomatis</i> Infection. Science Signaling, 2010, 3, ra21.	3.6	49
86	A Tag at the Carboxy Terminus Prevents Membrane Integration of VDAC1 in Mammalian Mitochondria. Journal of Molecular Biology, 2010, 397, 219-232.	4.2	13
87	Prohibitins Are Required for Cancer Cell Proliferation and Adhesion. PLoS ONE, 2010, 5, e12735.	2.5	60
88	cIAP-1 Controls Innate Immunity to C. pneumoniae Pulmonary Infection. PLoS ONE, 2009, 4, e6519.	2.5	20
89	Bim and Bmf Synergize To Induce Apoptosis in Neisseria Gonorrhoeae Infection. PLoS Pathogens, 2009, 5, e1000348.	4.7	35
90	Bacterial Porin Disrupts Mitochondrial Membrane Potential and Sensitizes Host Cells to Apoptosis. PLoS Pathogens, 2009, 5, e1000629.	4.7	72

#	Article	IF	CITATIONS
91	Apoptosis resistance in <i>Chlamydia</i> -infected cells: a fate worse than death?. FEMS Immunology and Medical Microbiology, 2009, 55, 154-161.	2.7	56
92	Host cell death machinery as a target for bacterial pathogens. Microbes and Infection, 2009, 11, 1063-1070.	1.9	33
93	Import of bacterial pathogenicity factors into mitochondria. Current Opinion in Microbiology, 2008, 11, 9-14.	5.1	47
94	Reduced Display of Tumor Necrosis Factor Receptor I at the Host Cell Surface Supports Infection with Chlamydia trachomatis. Journal of Biological Chemistry, 2008, 283, 6438-6448.	3.4	32
95	Mcl-1 Is a Key Regulator of Apoptosis Resistance in Chlamydia trachomatis-Infected Cells. PLoS ONE, 2008, 3, e3102.	2.5	107
96	Host Glycoprotein Gp96 and Scavenger Receptor SREC Interact with PorB of Disseminating Neisseria gonorrhoeae in an Epithelial Invasion Pathway. Cell Host and Microbe, 2007, 2, 393-403.	11.0	94
97	Bak and Bax are non-redundant during infection- and DNA damage-induced apoptosis. EMBO Journal, 2007, 26, 825-834.	7.8	63
98	Conserved roles of Sam50 and metaxins in VDAC biogenesis. EMBO Reports, 2007, 8, 576-582.	4.5	97
99	NF-?B and inhibitor of apoptosis proteins are required for apoptosis resistance of epithelial cells persistently infected with Chlamydophila pneumoniae. Cellular Microbiology, 2006, 8, 1643-1655.	2.1	43
100	IAP-IAP Complexes Required for Apoptosis Resistance of C. trachomatis–Infected Cells. PLoS Pathogens, 2006, 2, e114.	4.7	82
101	Low-Phosphate-Dependent Invasion Resembles a General Way for Neisseria gonorrhoeae To Enter Host Cells. Infection and Immunity, 2006, 74, 4266-4273.	2.2	44
102	Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nature Cell Biology, 2005, 7, 837-843.	10.3	306
103	Ras-Raf Signaling Needs Prohibitin. Cell Cycle, 2005, 4, 1503-1505.	2.6	78
104	VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways. EMBO Journal, 2002, 21, 1916-1929.	7.8	80
105	Low iron availability modulates the course ofChlamydia pneumoniaeinfection. Cellular Microbiology, 2001, 3, 427-437.	2.1	101
106	Epithelial Cells Infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) Are Resistant to Apoptosis. Infection and Immunity, 2001, 69, 7880-7888.	2.2	112
107	Characterization and intracellular trafficking pattern of vacuoles containing Chlamydia pneumoniae in human epithelial cells. Cellular Microbiology, 1999, 1, 237-247.	2.1	69
108	Mutagenesis of the Neisseria gonorrhoeae porin reduces invasion in epithelial cells and enhances phagocyte responsiveness. Molecular Microbiology, 1999, 31, 903-913.	2.5	53

#	Article	IF	CITATIONS
109	Construction of hermes shuttle vectors: a versatile system useful for genetic complementation of transformable and non-transformableNeisseria mutants. Molecular Genetics and Genomics, 1996, 250, 558-569.	2.4	22

110 Modulation of Host Cell Metabolism by <i>Chlamydia trachomatis</i>., 0, , 267-276.

0