
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9450231/publications.pdf Version: 2024-02-01

Ροληίλο Τ.ΡλΜ

#	Article	IF	CITATIONS
1	Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype. Cell Reports, 2021, 34, 108726.	6.4	27
2	Dasatinib, paclitaxel, and carboplatin in women with advanced-stage or recurrent endometrial cancer: A pilot clinical and translational study. Gynecologic Oncology, 2021, 161, 104-112.	1.4	4
3	MEK inhibition overcomes resistance to EphA2-targeted therapy in uterine cancer. Gynecologic Oncology, 2021, 163, 181-190.	1.4	5
4	Editor's Note: Targeting Src in Mucinous Ovarian Carcinoma. Clinical Cancer Research, 2021, 27, 4450-4450.	7.0	0
5	Editor's Note: Biologic Effects of Platelet-Derived Growth Factor Receptor α Blockade in Uterine Cancer. Clinical Cancer Research, 2021, 27, 4449-4449.	7.0	0
6	Rational Combination of CRM1 Inhibitor Selinexor and Olaparib Shows Synergy in Ovarian Cancer Cell Lines and Mouse Models. Molecular Cancer Therapeutics, 2021, 20, 2352-2361.	4.1	5
7	Peritoneal Spread of Ovarian Cancer Harbors Therapeutic Vulnerabilities Regulated by FOXM1 and EGFR/ERBB2 Signaling. Cancer Research, 2020, 80, 5554-5568.	0.9	29
8	GnRH-R–Targeted Lytic Peptide Sensitizes <i>BRCA</i> Wild-type Ovarian Cancer to PARP Inhibition. Molecular Cancer Therapeutics, 2019, 18, 969-979.	4.1	12
9	Predicting Novel Therapies and Targets: Regulation of Notch3 by the Bromodomain Protein BRD4. Molecular Cancer Therapeutics, 2019, 18, 421-436.	4.1	10
10	Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Research, 2018, 78, 3233-3242.	0.9	69
11	FABP4 as a key determinant of metastatic potential of ovarian cancer. Nature Communications, 2018, 9, 2923.	12.8	151
12	Macrophages Facilitate Resistance to Anti-VEGF Therapy by Altered VEGFR Expression. Clinical Cancer Research, 2017, 23, 7034-7046.	7.0	71
13	Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight, 2017, 2, .	5.0	38
14	Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. ELife, 2016, 5, e10250.	6.0	681
15	Nextâ€generation sequencing identifies high frequency of mutations in potentially clinically actionable genes in sebaceous carcinoma. Journal of Pathology, 2016, 240, 84-95.	4.5	63
16	Direct Upregulation of STAT3 by MicroRNA-551b-3p Deregulates Growth and Metastasis of Ovarian Cancer. Cell Reports, 2016, 15, 1493-1504.	6.4	75
17	Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth. Cell Metabolism, 2016, 24, 685-700.	16.2	293
18	A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nature Communications, 2016, 7, 11169.	12.8	100

#	Article	IF	CITATIONS
19	Adrenergic Stimulation of DUSP1 Impairs Chemotherapy Response in Ovarian Cancer. Clinical Cancer Research, 2016, 22, 1713-1724.	7.0	69
20	Genome-wide perturbations by miRNAs map onto functional cellular pathways, identifying regulators of chromatin modifiers. Npj Systems Biology and Applications, 2015, 1, 15001.	3.0	3
21	The ZNF304-integrin axis protects against anoikis in cancer. Nature Communications, 2015, 6, 7351.	12.8	48
22	Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer. Genome Medicine, 2015, 7, 21.	8.2	34
23	Immunotherapy Targeting Folate Receptor Induces Cell Death Associated with Autophagy in Ovarian Cancer. Clinical Cancer Research, 2015, 21, 448-459.	7.0	48
24	Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Research, 2015, 25, 257-267.	5.5	94
25	Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers. PLoS ONE, 2015, 10, e0140072.	2.5	9
26	Computational Approaches for Visualization and Integration of Omics Data. Comprehensive Analytical Chemistry, 2014, , 443-454.	1.3	0
27	Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Molecular Systems Biology, 2014, 10, 728.	7.2	255
28	Copy Number Gain of hsa-miR-569 at 3q26.2 Leads to Loss of TP53INP1 and Aggressiveness of Epithelial Cancers. Cancer Cell, 2014, 26, 863-879.	16.8	46
29	Inhibition of mTORC1/2 Overcomes Resistance to MAPK Pathway Inhibitors Mediated by PGC1α and Oxidative Phosphorylation in Melanoma. Cancer Research, 2014, 74, 7037-7047.	0.9	161
30	Biologic Effects of Platelet-Derived Growth Factor Receptor α Blockade in Uterine Cancer. Clinical Cancer Research, 2014, 20, 2740-2750.	7.0	14
31	Cancer Systems Biology: a peek into the future of patient care?. Nature Reviews Clinical Oncology, 2014, 11, 167-176.	27.6	159
32	Notch3 Pathway Alterations in Ovarian Cancer. Cancer Research, 2014, 74, 3282-3293.	0.9	59
33	$2\hat{a}$ € ² -OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nature Communications, 2014, 5, 3459.	12.8	103
34	Hematogenous Metastasis of Ovarian Cancer: Rethinking Mode of Spread. Cancer Cell, 2014, 26, 77-91.	16.8	252
35	A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications, 2014, 5, 3887.	12.8	456
36	Platelet-derived growth factor receptor alpha (PDGFRα) targeting and relevant biomarkers in ovarian carcinoma. Gynecologic Oncology, 2014, 132, 166-175.	1.4	31

#	Article	IF	CITATIONS
37	A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. Journal of Hepatology, 2014, 60, 1203-1211.	3.7	99
38	Mapping Network Motif Tunability and Robustness in the Design of Synthetic Signaling Circuits. PLoS ONE, 2014, 9, e91743.	2.5	7
39	Network Motifs in JNK Signaling. Genes and Cancer, 2013, 4, 409-413.	1.9	47
40	Tumour angiogenesis regulation by the miR-200 family. Nature Communications, 2013, 4, 2427.	12.8	363
41	Clinical Activity and Safety of Combination Therapy with Temsirolimus and Bevacizumab for Advanced Melanoma: A Phase II Trial (CTEP 7190/Mel47). Clinical Cancer Research, 2013, 19, 3611-3620.	7.0	46
42	The glucoseâ€deprivation network counteracts lapatinibâ€induced toxicity in resistant ErbB2â€positive breast cancer cells. Molecular Systems Biology, 2012, 8, 596.	7.2	109
43	Bioinformatics and systems biology. Molecular Oncology, 2012, 6, 147-154.	4.6	22
44	NetWalker: a contextual network analysis tool for functional genomics. BMC Genomics, 2012, 13, 282.	2.8	99
45	Targeting Src in Mucinous Ovarian Carcinoma. Clinical Cancer Research, 2011, 17, 5367-5378.	7.0	42
46	Silencing of p130Cas in Ovarian Carcinoma: A Novel Mechanism for Tumor Cell Death. Journal of the National Cancer Institute, 2011, 103, 1596-1612.	6.3	44
47	Clinical Applications of Systems Biology Approaches. , 2011, , 409-428.		Ο
48	Patterns of human gene expression variance show strong associations with signaling network hierarchy. BMC Systems Biology, 2010, 4, 154.	3.0	24
49	Basal and Treatment-Induced Activation of AKT Mediates Resistance to Cell Death by AZD6244 (ARRY-142886) in <i>Braf-</i> Mutant Human Cutaneous Melanoma Cells. Cancer Research, 2010, 70, 8736-8747.	0.9	222
50	Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15449-15454.	7.1	909
51	Use of Data-Biased Random Walks on Graphs for the Retrieval of Context-Specific Networks from Genomic Data. PLoS Computational Biology, 2010, 6, e1000889.	3.2	79
52	Identification of Optimal Drug Combinations Targeting Cellular Networks: Integrating Phospho-Proteomics and Computational Network Analysis. Cancer Research, 2010, 70, 6704-6714.	0.9	198
53	Systems Biology of the MAPK1,2 Network. Systems Biology, 2010, , 455-489.	0.1	2
54	Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle. BMC Systems Biology, 2008, 2, 76.	3.0	12

#	Article	IF	CITATIONS
55	The Signaling Petri Net-Based Simulator: A Non-Parametric Strategy for Characterizing the Dynamics of Cell-Specific Signaling Networks. PLoS Computational Biology, 2008, 4, e1000005.	3.2	81
56	Network topology determines dynamics of the mammalian MAPK1,2 signaling network: bifan motif regulation of Câ€Raf and Bâ€Raf isoforms by FGFR and MC1R. FASEB Journal, 2008, 22, 1393-1403.	0.5	18
57	An androgen-IL-6-Stat3 autocrine loop re-routes EGF signal in prostate cancer cells. Molecular and Cellular Endocrinology, 2007, 270, 50-56.	3.2	41
58	Hypothesis Generation in Signaling Networks. Journal of Computational Biology, 2006, 13, 1546-1557.	1.6	26
59	De Novo Signaling Pathway Predictions Based on Protein-Protein Interaction, Targeted Therapy and Protein Microarray Analysis. Lecture Notes in Computer Science, 2006, , 108-118.	1.3	5
60	Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery. Nature Reviews Drug Discovery, 2005, 4, 988-1004.	46.4	1,853
61	The Gαo/i-coupled Cannabinoid Receptor-mediated Neurite Outgrowth Involves Rap Regulation of Src and Stat3. Journal of Biological Chemistry, 2005, 280, 33426-33434.	3.4	102
62	Formation of Regulatory Patterns During Signal Propagation in a Mammalian Cellular Network. Science, 2005, 309, 1078-1083.	12.6	329
63	The Signaling Petri Net-based Simulator: A Non-Parametric Strategy for Characterizing the Dynamics of Cell-Specific Signaling Networks. PLoS Computational Biology, 2005, preprint, e5.	3.2	0
64	Quantitative Information Management for the Biochemical Computation of Cellular Networks. Science Signaling, 2004, 2004, pl11-pl11.	3.6	29
65	Effectors of Gαo Signaling. , 2003, , 605-607.		0
66	Overexpression of Tightly Regulated Proteins: Protein Phosphatase 2A Overexpression in NIH 3T3 Cells. Methods in Enzymology, 2002, 345, 551-555.	1.0	1
67	G Protein Pathways. Science, 2002, 296, 1636-1639.	12.6	1,110
68	MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network. Science, 2002, 297, 1018-1023.	12.6	601
69	G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation. Oncogene, 2001, 20, 1601-1606.	5.9	122
70	Modulation of the Estrogen Response Pathway in Human Breast Cancer Cells by Melatonin. , 2001, , 343-358.		5
71	Expression patterns of novel genes during mouse preimplantation embryogenesis. Molecular Reproduction and Development, 1994, 37, 121-129.	2.0	142
72	Reporter Gene Expression in G2 of the 1-Cell Mouse Embryo. Developmental Biology, 1993, 156, 552-556.	2.0	181