Ibolya Rutkai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/944996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of aging on protein expression in mice brain microvessels: ROS scavengers, mRNA/protein stability, glycolytic enzymes, mitochondrial complexes, and basement membrane components. GeroScience, 2022, 44, 371-388.	4.6	13
2	Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nature Communications, 2022, 13, 1745.	12.8	108
3	Effects of Aging on Proteome Dynamics in Mice Brain Microvessels: ROS Scavengers, mRNA/Protein Stability, Glycolytic Enzymes, Mitochondrial Complexes, and Basement Membrane Components. FASEB Journal, 2022, 36, .	0.5	0
4	Circulating Exosomal Proteins are linked to Neuropathogenesis in SIVâ€infected Rhesus Macaque: A Proteomic Approach. FASEB Journal, 2022, 36, .	0.5	0
5	Inflammation and Hypoxia May Underlie Neuronal Death in Brain of SARSâ€CoVâ€2 Infected Nonâ€Human Primates. FASEB Journal, 2022, 36, .	0.5	0
6	Sexual differences in mitochondrial and related proteins in rat cerebral microvessels: A proteomic approach. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 397-412.	4.3	50
7	Perlecan Domain-V Enhances Neurogenic Brain Repair After Stroke in Mice. Translational Stroke Research, 2021, 12, 72-86.	4.2	27
8	Latent HIV-Exosomes Induce Mitochondrial Hyperfusion Due to Loss of Phosphorylated Dynamin-Related Protein 1 in Brain Endothelium. Molecular Neurobiology, 2021, 58, 2974-2989.	4.0	15
9	Transcriptome analysis reveals sexual disparities in gene expression in rat brain microvessels. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2311-2328.	4.3	56
10	Latent HIVâ€1 Exosomes Induce Mitochondrial Hyperfusion due to Loss of Phosphorylated Dynaminâ€related Protein 1 in Brain Endothelium. FASEB Journal, 2021, 35, .	0.5	0
11	Multiomics Uncover Sexual Disparities in the Expression of Genes and Proteins in Rat Cerebral Microvessels. FASEB Journal, 2021, 35, .	0.5	0
12	Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. International Journal of Molecular Sciences, 2020, 21, 679.	4.1	5
13	Chronic imaging of mitochondria in the murine cerebral vasculature using in vivo two-photon microscopy. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1379-H1386.	3.2	7
14	Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1086-H1092.	3.2	8
15	Measuring Respiration in Isolated Murine Brain Mitochondria: Implications for Mechanistic Stroke Studies. NeuroMolecular Medicine, 2019, 21, 493-504.	3.4	9
16	Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1056-1068.	4.3	33
17	Measurement of respiratory function in isolated cardiac mitochondria using Seahorse XFe24 Analyzer: applications for aging research. GeroScience, 2018, 40, 347-356.	4.6	38
18	Assessing Mitochondrial Respiratory Function in Isolated Mouse Brain Microvessels using Seahorse XFe Analyzer: Role of Neuronal Nitric Oxide Synthase. FASEB Journal, 2018, 32, 577.5.	0.5	0

Ιβοιγά Ρυτκαι

#	Article	IF	CITATIONS
19	Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1097-H1106.	3.2	24
20	The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H830-H838.	3.2	18
21	Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. , 2016, 6, 1529-1548.		36
22	The mechanistic target of rapamycin (<scp>mTOR</scp>) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons. Journal of Neurochemistry, 2015, 134, 845-856.	3.9	21
23	Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1490-H1500.	3.2	26
24	Identification and Functional Characterization of Neuronal Nitric Oxide Synthase in Primary Brain Microvascular Endothelial Cells. FASEB Journal, 2015, 29, 795.6.	0.5	0
25	Sustained mitochondrial functioning in cerebral arteries after transient ischemic stress in the rat: a potential target for therapies. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H958-H966.	3.2	15
26	Novel mitochondrial mechanisms mediate enhanced vasodilation of rat middle cerebral arteries to mitochondrial depolarization following ischemiaâ€reperfusion injury. FASEB Journal, 2013, 27, 1131.10.	0.5	0
27	Abnormal ER and mitochondrial communication underlies ER stress in cerebrovascular insulin resistance. FASEB Journal, 2013, 27, 924.5.	0.5	0