Yangming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/944978/publications.pdf

Version: 2024-02-01

45 papers

4,342 citations

218677 26 h-index 214800 47 g-index

52 all docs

52 docs citations

times ranked

52

5543 citing authors

#	Article	IF	CITATIONS
1	Controlling <scp>CRISPRâ€Cas9</scp> by guide <scp>RNA</scp> engineering. Wiley Interdisciplinary Reviews RNA, 2023, 14, e1731.	6.4	6
2	KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. Science China Life Sciences, 2022, 65, 1985-1997.	4.9	6
3	Acidic pH transiently prevents the silencing of self-renewal and dampens microRNA function in embryonic stem cells. Science Bulletin, 2021, 66, 1319-1329.	9.0	4
4	Monitoring the promoter activity of long noncoding RNAs and stem cell differentiation through knock-in of sgRNA flanked by tRNA in an intron. Cell Discovery, 2021, 7, 45.	6.7	3
5	SETDB1-Mediated Cell Fate Transition between 2C-Like and Pluripotent States. Cell Reports, 2020, 30, 25-36.e6.	6.4	64
6	KLF3 promotes the 8â€cellâ€ike transcriptional state in pluripotent stem cells. Cell Proliferation, 2020, 53, e12914.	5.3	4
7	Distinct Processing of IncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell, 2020, 181, 621-636.e22.	28.9	192
8	microRNA regulation of pluripotent state transition. Essays in Biochemistry, 2020, 64, 947-954.	4.7	2
9	Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program. Protein and Cell, 2019, 10, 327-346.	11.0	14
10	Functional Dissection of pri-miR-290~295 in Dgcr8 Knockout Mouse Embryonic Stem Cells. International Journal of Molecular Sciences, 2019, 20, 4345.	4.1	3
11	Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cellular and Molecular Life Sciences, 2019, 76, 1697-1711.	5.4	28
12	Pathogenic mechanism and gene correction for LQTS-causing double mutations in KCNQ1 using a pluripotent stem cell model. Stem Cell Research, 2019, 38, 101483.	0.7	9
13	DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biology, 2019, 17, e3000324.	5.6	78
14	A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nature Communications, 2019, 10, 1368.	12.8	53
15	A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nature Cell Biology, 2019, 21, 522-530.	10.3	117
16	Cellular redox state as a critical factor in initiating early embryonic-like program in embryonic stem cells. Cell Discovery, 2019, 5, 59.	6.7	7
17	Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15, 213-220.	19.0	170
18	Opposing roles of miRâ€294 and <scp>MBNL</scp> 1/2 in shaping the gene regulatory network of embryonic stem cells. EMBO Reports, 2018, 19, .	4.5	15

#	Article	IF	Citations
19	Significant differences of function and expression of microRNAs between ground state and serum-cultured pluripotent stem cells. Journal of Genetics and Genomics, 2017, 44, 179-189.	3.9	12
20	Danshenâ€Enhanced Cardioprotective Effect of Cardioplegia on Ischemia Reperfusion Injury in a Humanâ€Induced Pluripotent Stem Cellâ€Derived Cardiomyocytes Model. Artificial Organs, 2017, 41, 452-460.	1.9	22
21	A DGCR8-Independent Stable MicroRNA Expression Strategy Reveals Important Functions of miR-290 and miR-183–182 Families in Mouse Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1618-1629.	4.8	17
22	NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nature Structural and Molecular Biology, 2017, 24, 816-824.	8.2	165
23	MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 95-103.	3.3	33
24	Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Research, 2016, 26, 350-366.	12.0	59
25	Suppression of epithelial–mesenchymal transition and apoptotic pathways by miR-294/302 family synergistically blocks let-7-induced silencing of self-renewal in embryonic stem cells. Cell Death and Differentiation, 2015, 22, 1158-1169.	11.2	34
26	miRâ€290/371â€Mbd2â€Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO Journal, 2015, 34, 609-623.	7.8	82
27	Large Noncoding RNAs Are Promising Regulators in Embryonic Stem Cells. Journal of Genetics and Genomics, 2015, 42, 99-105.	3.9	19
28	Functional screen reveals essential roles of miRâ€27a/24 in differentiation of embryonic stemÂcells. EMBO Journal, 2015, 34, 361-378.	7.8	54
29	Micro-management of pluripotent stem cells. Protein and Cell, 2014, 5, 36-47.	11.0	16
30	miR-294/miR-302 Promotes Proliferation, Suppresses G1-S Restriction Point, and Inhibits ESC Differentiation through Separable Mechanisms. Cell Reports, 2013, 4, 99-109.	6.4	84
31	Cell Cycle Regulation by microRNAs in Stem Cells. Results and Problems in Cell Differentiation, 2011, 53, 459-472.	0.7	31
32	Cell Cycle Regulation by MicroRNAs in Embryonic Stem Cells. Cancer Research, 2009, 69, 4093-4096.	0.9	117
33	Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes and Development, 2008, 22, 2773-2785.	5.9	739
34	Embryonic stem cell–specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 2008, 40, 1478-1483.	21.4	621
35	DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 2007, 39, 380-385.	21.4	934
36	Experimental Tests of Two Proofreading Mechanisms for 5′-Splice Site Selection. ACS Chemical Biology, 2006, 1, 316-324.	3.4	12

#	Article	IF	Citations
37	Adenosine Is Inherently Favored as the Branch-Site RNA Nucleotide in a Structural Context That Resembles Natural RNA Splicingâ€. Biochemistry, 2006, 45, 2767-2771.	2.5	32
38	Efficient RNA 5'-adenylation by T4 DNA ligase to facilitate practical applications. Rna, 2006, 12, 1142-1146.	3. 5	16
39	Efficient One-Step Synthesis of Biologically Related Lariat RNAs by a Deoxyribozyme. Angewandte Chemie - International Edition, 2005, 44, 5863-5866.	13.8	47
40	A general two-step strategy to synthesize lariat RNAs. Rna, 2005, 12, 313-321.	3.5	10
41	A deoxyribozyme that synthesizes 2',5'-branched RNA with any branch-site nucleotide. Nucleic Acids Research, 2005, 33, 3503-3512.	14.5	39
42	Directing the Outcome of Deoxyribozyme Selections To Favor Native 3'â^'5' RNA Ligationâ€. Biochemistry, 2005, 44, 3017-3023.	2.5	46
43	Deoxyribozymes with 2 â^'5  RNA Ligase Activity. Journal of the American Chemical Society, 2003, 125, 2444-2454.	13.7	152
44	Deoxyribozymes That Synthesize Branched and Lariat RNA. Journal of the American Chemical Society, 2003, 125, 6880-6881.	13.7	110
45	Characterization of Deoxyribozymes That Synthesize Branched RNAâ€. Biochemistry, 2003, 42, 15252-15263.	2.5	52