
Janneke Balk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449700/publications.pdf Version: 2024-02-01

IANNEKE RALK

#	Article	lF	CITATIONS
1	A colorimetric method to measure in vitro nitrogenase functionality for engineering nitrogen fixation. Scientific Reports, 2022, 12, .	3.3	6
2	<i>NUBPL</i> mitochondrial disease: new patients and review of the genetic and clinical spectrum. Journal of Medical Genetics, 2021, 58, 314-325.	3.2	9
3	The iron will of the research community: advances in iron nutrition and interactions in lockdown times. Journal of Experimental Botany, 2021, 72, 2011-2013.	4.8	3
4	The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. Plant Physiology, 2021, 186, 1507-1525.	4.8	12
5	Subcellular dynamics studies of iron reveal how tissueâ€specific distribution patterns are established in developing wheat grains. New Phytologist, 2021, 231, 1644-1657.	7.3	15
6	Protein lipoylation in mitochondria requires Fe-S cluster assembly factors NFU4 and NFU5. Plant Physiology, 2021, , .	4.8	7
7	The <i>Medicago truncatula</i> Vacuolar iron Transporterâ€Like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at different stages of the infection process. New Phytologist, 2020, 228, 651-666.	7.3	29
8	Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. New Phytologist, 2019, 224, 1569-1584.	7.3	57
9	Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17584-17591.	7.1	91
10	Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics. Plant and Cell Physiology, 2019, 60, 1447-1456.	3.1	120
11	Hemerythrin E3 Ubiquitin Ligases as Negative Regulators of Iron Homeostasis in Plants. Frontiers in Plant Science, 2019, 10, 98.	3.6	48
12	Genetic dissection of cyclic pyranopterin monophosphate biosynthesis in plant mitochondria. Biochemical Journal, 2018, 475, 495-509.	3.7	13
13	The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Scientific Reports, 2018, 8, 6865.	3.3	39
14	Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe. Current Biology, 2018, 28, 1614-1619.e3.	3.9	62
15	Pathogenic mutations in NUBPL affect complex I activity and cold tolerance in the yeast model Yarrowia lipolytica. Human Molecular Genetics, 2018, 27, 3697-3709.	2.9	8
16	Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds. Plant Physiology, 2018, 177, 1267-1276.	4.8	65
17	<scp>NBP</scp> 35 interacts with <scp>DRE</scp> 2 in the maturation of cytosolic ironâ€sulphur proteins in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 590-600.	5.7	31
18	Iron homeostasis in plants – a brief overview. Metallomics, 2017, 9, 813-823.	2.4	287

Janneke Balk

#	Article	IF	CITATIONS
19	Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification. Plant Physiology, 2017, 174, 2434-2444.	4.8	206
20	Structures and functions of mitochondrial ABC transporters. Biochemical Society Transactions, 2015, 43, 943-951.	3.4	50
21	Arabidopsis Glutaredoxin S17 and Its Partner, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α, Contribute to Maintenance of the Shoot Apical Meristem under Long-Day Photoperiod. Plant Physiology, 2015, 167, 1643-1658.	4.8	78
22	Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System. Journal of Biological Chemistry, 2015, 290, 27829-27840.	3.4	19
23	Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in <i>Arabidopsis</i> . Biochemical Journal, 2014, 463, 309-317.	3.7	33
24	Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Frontiers in Plant Science, 2014, 5, 53.	3.6	171
25	The Mitochondrial Sulfur Dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 Is Required for Amino Acid Catabolism during Carbohydrate Starvation and Embryo Development in Arabidopsis Â. Plant Physiology, 2014, 165, 92-104.	4.8	57
26	Iron Cofactor Assembly in Plants. Annual Review of Plant Biology, 2014, 65, 125-153.	18.7	239
27	A Conserved Mitochondrial ATP-binding Cassette Transporter Exports Glutathione Polysulfide for Cytosolic Metal Cofactor Assembly. Journal of Biological Chemistry, 2014, 289, 23264-23274.	3.4	141
28	Insights into the pathogenic character of a common <i>NUBPL</i> branch-site mutation associated with mitochondrial disease and complex I deficiency using a yeast model. DMM Disease Models and Mechanisms, 2013, 6, 1279-84.	2.4	10
29	The Evolutionarily Conserved Iron-Sulfur Protein INDH Is Required for Complex I Assembly and Mitochondrial Translation in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 4014-4027.	6.6	66
30	Requirements of the cytosolic iron–sulfur cluster assembly pathway in Arabidopsis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120259.	4.0	42
31	Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana. Biochemical Journal, 2012, 445, 275-283.	3.7	43
32	The DUF59 Family Gene <i>AE7</i> Acts in the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Maintain Nuclear Genome Integrity in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4135-4148.	6.6	72
33	Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends in Plant Science, 2011, 16, 218-226.	8.8	311
34	A Novel Role for <i>Arabidopsis</i> Mitochondrial ABC Transporter ATM3 in Molybdenum Cofactor Biosynthesis Â. Plant Cell, 2010, 22, 468-480.	6.6	128
35	Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I. Molecular and Cellular Biology, 2009, 29, 6059-6073.	2.3	184
36	An Allelic Mutant Series of <i>ATM3</i> Reveals Its Key Role in the Biogenesis of Cytosolic Iron-Sulfur Proteins in Arabidopsis Â. Plant Physiology, 2009, 151, 590-602.	4.8	120

Janneke Balk

#	Article	IF	CITATIONS
37	The iron–sulphur protein Ind1 is required for effective complex I assembly. EMBO Journal, 2008, 27, 1736-1746.	7.8	158
38	The Essential Cytosolic Iron-Sulfur Protein Nbp35 Acts without Cfd1 Partner in the Green Lineage. Journal of Biological Chemistry, 2008, 283, 35797-35804.	3.4	68
39	Functional analysis of Arabidopsis genes involved in mitochondrial iron–sulfur cluster assembly. Plant Molecular Biology, 2007, 64, 225-240.	3.9	55
40	Histochemical staining and quantification of plant mitochondrial respiratory chain complexes using blue-native polyacrylamide gel electrophoresis. Plant Journal, 2005, 44, 893-901.	5.7	100
41	The Essential WD40 Protein Cia1 Is Involved in a Late Step of Cytosolic and Nuclear Iron-Sulfur Protein Assembly. Molecular and Cellular Biology, 2005, 25, 10833-10841.	2.3	118
42	The eukaryotic P loop NTPase Nbp35: An essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3266-3271.	7.1	156
43	Biogenesis of iron–sulfur proteins in plants. Trends in Plant Science, 2005, 10, 324-331.	8.8	221
44	Functional Characterization of the Eukaryotic Cysteine Desulfurase Nfs1p from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 36906-36915.	3.4	119
45	The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO Journal, 2004, 23, 2105-2115.	7.8	196