Alasdair J Coles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449649/publications.pdf

Version: 2024-02-01

47006 29157 17,068 108 47 104 citations h-index g-index papers 112 112 112 14587 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multiple sclerosis. Lancet, The, 2008, 372, 1502-1517.	13.7	3,988
2	Multiple sclerosis. Lancet, The, 2002, 359, 1221-1231.	13.7	1,792
3	Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet, The, 2012, 380, 1819-1828.	13.7	1,041
4	Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet, The, 2012, 380, 1829-1839.	13.7	1,040
5	Alemtuzumab vs. Interferon Beta-1a in Early Multiple Sclerosis. New England Journal of Medicine, 2008, 359, 1786-1801.	27.0	927
6	Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Annals of Neurology, 1999, 46, 296-304.	5. 3	494
7	The window of therapeutic opportunity in multiple sclerosis. Journal of Neurology, 2006, 253, 98-108.	3 . 6	469
8	Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet, The, 1999, 354, 1691-1695.	13.7	447
9	Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA - Journal of the American Medical Association, 2019, 321, 175.	7.4	336
10	Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. European Journal of Immunology, 2005, 35, 3332-3342.	2.9	279
11	Disease-relevant autoantibodies in first episode schizophrenia. Journal of Neurology, 2011, 258, 686-688.	3 . 6	277
12	Mutations in the selenocysteine insertion sequence–binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. Journal of Clinical Investigation, 2010, 120, 4220-4235.	8.2	268
13	IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). Journal of Clinical Investigation, 2009, 119, 2052-61.	8.2	257
14	Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain, 1996, 119, 225-237.	7.6	249
15	Alemtuzumab CARE-MS II 5-year follow-up. Neurology, 2017, 89, 1117-1126.	1.1	232
16	Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurology, The, 2020, 19, 307-316.	10.2	219
17	Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 208-215.	1.9	208
18	B-Cell Reconstitution and BAFF After Alemtuzumab (Campath-1H) Treatment of Multiple Sclerosis. Journal of Clinical Immunology, 2010, 30, 99-105.	3.8	207

#	Article	IF	CITATIONS
19	Alemtuzumab CARE-MS I 5-year follow-up. Neurology, 2017, 89, 1107-1116.	1.1	188
20	Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20200-20205.	7.1	185
21	Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain, 2013, 136, 2888-2903.	7.6	174
22	Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 298-304.	1.9	171
23	Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Practical Neurology, 2015, 15, 273-279.	1.1	169
24	Neurological Implications of COVID-19 Infections. Neurocritical Care, 2020, 32, 667-671.	2.4	165
25	Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain, 2010, 133, 2232-2247.	7.6	152
26	Quantifying normal human brain metabolism using hyperpolarized [1–13C]pyruvate and magnetic resonance imaging. NeuroImage, 2019, 189, 171-179.	4.2	144
27	Cerebral venous thrombosis after vaccination against COVID-19 in the UK: a multicentre cohort study. Lancet, The, 2021, 398, 1147-1156.	13.7	141
28	Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurology, The, 2017, 16, 271-281.	10.2	134
29	Alemtuzumab versus interferon beta-1a in early relapsing-remitting multiple sclerosis: post-hoc and subset analyses of clinical efficacy outcomes. Lancet Neurology, The, 2011, 10, 338-348.	10.2	125
30	Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology, 2013, 81, 872-876.	1.1	120
31	Clinical relevance of serum antibodies to extracellular $\langle i \rangle N \langle j i \rangle$ -methyl-d-aspartate receptor epitopes. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 708-713.	1.9	97
32	A distinctive form of immune thrombocytopenia in a phase 2 study of alemtuzumab for the treatment of relapsing-remitting multiple sclerosis. Blood, 2011, 118, 6299-6305.	1.4	96
33	Antibody-mediated encephalitis: a treatable cause of schizophrenia. British Journal of Psychiatry, 2012, 200, 92-94.	2.8	94
34	Campath-1H treatment of multiple sclerosis: lessons from the bedside for the bench. Clinical Neurology and Neurosurgery, 2004, 106, 270-274.	1.4	90
35	Promoting remyelination in multiple sclerosis. Journal of Neurology, 2021, 268, 30-44.	3.6	79
36	Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. European Journal of Neuroscience, 2003, 18, 2527-2537.	2.6	73

#	Article	IF	CITATIONS
37	A Novel Strategy To Reduce the Immunogenicity of Biological Therapies. Journal of Immunology, 2010, 185, 763-768.	0.8	65
38	Alemtuzumab Therapy for Multiple Sclerosis. Neurotherapeutics, 2013, 10, 29-33.	4.4	63
39	GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. Journal of Parkinson's Disease, 2020, 10, 875-891.	2.8	63
40	Immunotherapy for patients with acute psychosis and serum N-Methyl d-Aspartate receptor (NMDAR) antibodies: A description of a treated case series. Schizophrenia Research, 2014, 160, 193-195.	2.0	62
41	Guidelines on the use of irradiated blood components. British Journal of Haematology, 2020, 191, 704-724.	2.5	61
42	Alemtuzumab-Induced Thyroid Dysfunction Exhibits Distinctive Clinical and Immunological Features. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3010-3018.	3.6	57
43	Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study. Multiple Sclerosis Journal, 2019, 25, 1605-1617.	3.0	57
44	Alemtuzumab improves preexisting disability in active relapsing-remitting MS patients. Neurology, 2016, 87, 1985-1992.	1.1	55
45	Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity. Neurology, 2014, 82, 2158-2164.	1.1	52
46	Mode of action and clinical studies with alemtuzumab. Experimental Neurology, 2014, 262, 37-43.	4.1	51
47	Protocol for the insight study: a randomised controlled trial of single-dose tocilizumab in patients with depression and low-grade inflammation. BMJ Open, 2018, 8, e025333.	1.9	51
48	Dehydroepiandrosterone replacement in patients with Addison's disease has a bimodal effect on regulatory (CD4+CD25hi and CD4+FoxP3+) Tâ€,,cells. European Journal of Immunology, 2005, 35, 3694-3703.	2.9	50
49	Hyperpolarized ¹³ C MRI: A novel approach for probing cerebral metabolism in health and neurological disease. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1137-1147.	4.3	49
50	Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight, 2017, 2, .	5.0	46
51	Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurology, The, 2021, 20, 709-720.	10.2	44
52	Predicting autoimmunity after alemtuzumab treatment of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 795-798.	1.9	42
53	Impact of mass vaccination on SARS-CoV-2 infections among multiple sclerosis patients taking immunomodulatory disease-modifying therapies in England. Multiple Sclerosis and Related Disorders, 2022, 57, 103458.	2.0	40
54	New treatment strategies in multiple sclerosis. Experimental Neurology, 2010, 225, 34-39.	4.1	39

#	Article	IF	CITATIONS
55	Alemtuzumab use in neuromyelitis optica spectrum disorders: a brief case series. Journal of Neurology, 2016, 263, 25-29.	3.6	39
56	Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain, 2018, 141, 786-796.	7.6	39
57	Self-diagnosed COVID-19 in people with multiple sclerosis: a community-based cohort of the UK MS Register. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 107-109.	1.9	38
58	Antiâ€ILâ€7 receptor α monoclonal antibody (GSK2618960) in healthy subjects – a randomized, doubleâ€blind placeboâ€controlled study. British Journal of Clinical Pharmacology, 2019, 85, 304-315.	l, 2.4	36
59	Campath-1H Treatment of Multiple Sclerosis. Neurodegenerative Diseases, 2008, 5, 27-31.	1.4	34
60	COVID-19 is associated with new symptoms of multiple sclerosis that are prevented by disease modifying therapies. Multiple Sclerosis and Related Disorders, 2021, 52, 102939.	2.0	34
61	'Radiologically compatible CLIPPERS' may conceal a number of pathologies. Brain, 2011, 134, e187-e187.	7.6	33
62	Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Multiple Sclerosis Journal, 2013, 19, 241-244.	3.0	33
63	Case report of anti-glomerular basement membrane disease following alemtuzumab treatment of relapsing–remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 2013, 2, 60-63.	2.0	32
64	Hemophagocytic lymphohistiocytosis in 2 patients with multiple sclerosis treated with alemtuzumab. Neurology, 2018, 90, 849-851.	1.1	32
65	Determining the effectiveness of early intensive versus escalation approaches for the treatment of relapsing-remitting multiple sclerosis: The DELIVER-MS study protocol. Contemporary Clinical Trials, 2020, 95, 106009.	1.8	31
66	Long-term remission with rituximab in refractory leucine-rich glioma inactivated 1 antibody encephalitis. Journal of Neuroimmunology, 2014, 271, 66-68.	2.3	30
67	Tumefactive demyelination following treatment for relapsing multiple sclerosis with alemtuzumab. Neurology, 2017, 88, 1004-1006.	1.1	30
68	Efficacy and safety of alemtuzumab over 6 years: final results of the 4-year CARE-MS extension trial. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642098213.	3.5	30
69	Alemtuzumab Treatment of Multiple Sclerosis. Seminars in Neurology, 2013, 33, 066-073.	1.4	29
70	Incidence, management, and outcomes of autoimmune nephropathies following alemtuzumab treatment in patients with multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1273-1288.	3.0	29
71	Superior MRI outcomes with alemtuzumab compared with subcutaneous interferon \hat{l}^2 -1a in MS. Neurology, 2016, 87, 1464-1472.	1.1	28
72	Multiple sclerosis: THE BARE ESSENTIALS. Practical Neurology, 2009, 9, 118-126.	1.1	27

#	Article	IF	CITATIONS
73	Future MS care: a consensus statement of the MS in the 21st Century Steering Group. Journal of Neurology, 2013, 260, 462-469.	3.6	27
74	Alemtuzumab: evidence for its potential in relapsing& ndash; remitting multiple sclerosis. Drug Design, Development and Therapy, 2013, 7, 131.	4.3	26
75	Sarcoidosis following alemtuzumab treatment for multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1779-1782.	3.0	25
76	Delay from treatment start to full effect of immunotherapies for multiple sclerosis. Brain, 2020, 143, 2742-2756.	7.6	24
77	Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury. Journal of Immunology, 2021, 207, 90-100.	0.8	24
78	Alemtuzumab as Treatment for Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a032029.	6.2	22
79	Aggressive multiple sclerosis (2): Treatment. Multiple Sclerosis Journal, 2020, 26, 1045-1063.	3.0	21
80	Study of immunotherapy in antibody positive psychosis: feasibility and acceptability (SINAPPS1). Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 365-367.	1.9	19
81	Monoclonal antibodies in multiple sclerosis treatment: current and future steps. Therapeutic Advances in Neurological Disorders, 2009, 2, 195-203.	3.5	17
82	Sample sizes for lesion magnetisation transfer ratio outcomes in remyelination trials for multiple sclerosis. Multiple Sclerosis and Related Disorders, 2014, 3, 237-243.	2.0	17
83	Use of Disease-Modifying Therapies in Pediatric Relapsing-Remitting Multiple Sclerosis in the United Kingdom. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	16
84	Keratinocyte growth factor impairs human thymic recovery from lymphopenia. JCI Insight, 2019, 4, .	5.0	16
85	The impact of smoking cessation on multiple sclerosis disease progression. Brain, 2022, 145, 1368-1378.	7.6	16
86	Alemtuzumab improves neurological functional systems in treatment-naive relapsing-remitting multiple sclerosis patients. Journal of the Neurological Sciences, 2016, 363, 188-194.	0.6	15
87	Systematic approach to selecting licensed drugs for repurposing in the treatment of progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 295-302.	1.9	15
88	Alemtuzumab in multiple sclerosis: latest evidence and clinical prospects. Therapeutic Advances in Chronic Disease, 2013, 4, 97-103.	2.5	13
89	Autoimmunity and long-term safety and efficacy of alemtuzumab for multiple sclerosis: Benefit/risk following review of trial and post-marketing data. Multiple Sclerosis Journal, 2022, 28, 842-846.	3.0	13
90	Newer therapies for multiple sclerosis. Annals of Indian Academy of Neurology, 2015, 18, 30.	0.5	11

#	Article	IF	CITATIONS
91	Remyelination in humans due to a retinoidâ€X receptor agonist is ageâ€dependent. Annals of Clinical and Translational Neurology, 2022, 9, 1090-1094.	3.7	10
92	Product licences for alemtuzumab and multiple sclerosis. Lancet, The, 2014, 383, 867-868.	13.7	8
93	Intravenous immunoglobulin and rituximab versus placebo treatment of antibody-associated psychosis: study protocol of a randomised phase IIa double-blinded placebo-controlled trial (SINAPPS2). Trials, 2019, 20, 331.	1.6	7
94	The Outlook for Alemtuzumab in Multiple Sclerosis. BioDrugs, 2013, 27, 181-189.	4.6	6
95	Periventricular magnetisation transfer ratio abnormalities in multiple sclerosis improve after alemtuzumab. Multiple Sclerosis Journal, 2020, 26, 1093-1101.	3.0	6
96	A case of anaphylaxis to alemtuzumab. Journal of Neurology, 2019, 266, 780-781.	3.6	6
97	Physician-assisted death should be available to people with MS – Commentary. Multiple Sclerosis Journal, 2017, 23, 1681-1681.	3.0	5
98	Hypothyroid ataxia complicating monoclonal antibody therapy. Practical Neurology, 2017, 17, 482-484.	1.1	4
99	A systematic checklist approach to immunosuppression risk management: An audit of practice at two clinical neuroimmunology centers. Journal of Neuroimmunology, 2017, 312, 4-7.	2.3	2
100	Alemtuzumab in Multiple Sclerosis. Noropsikiyatri Arsivi, 2011, 48, 79-82.	0.7	1
101	Progressive multifocal leucoencephalopathy with Behçet's disease: an insight into pathophysiology. Rheumatology, 2017, 56, kew404.	1.9	1
102	Susac's syndrome as an autoimmune complication of alemtuzumab-associated immune reconstitution. Journal of Neurology, 2022, 269, 1695-1697.	3.6	1
103	Campath, clones and the cause of autoimmunity. Brain, 2022, 145, 1579-1580.	7.6	1
104	Alemtuzumab for the treatment of multiple sclerosis. Future Neurology, 2010, 5, 177-188.	0.5	0
105	Alemtuzumab to treat multiple sclerosis., 0,, 393-398.		0
106	We are about to cure MS in the next 10 years, even though we do not know its cause: No. Multiple Sclerosis Journal, 2012, 18, 784-785.	3.0	0
107	Targeting CD52 for the Treatment of Multiple Sclerosis. , 2013, , 385-399.		0
108	All manner of ingenuity and industry. Brain, 0, , .	7.6	0