List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/944957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and Characterization of Synthetic Glucopyranosyl Lipid Adjuvant System as a Vaccine Adjuvant. PLoS ONE, 2011, 6, e16333.	2.5	281
2	A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant <i>Mycobacterium tuberculosis</i> . Science Translational Medicine, 2010, 2, 53ra74.	12.4	268
3	Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Scientific Reports, 2016, 6, 19570.	3.3	205
4	Leish-111f, a Recombinant Polyprotein Vaccine That Protects against Visceral Leishmaniasis by Elicitation of CD4 ⁺ T Cells. Infection and Immunity, 2007, 75, 4648-4654.	2.2	187
5	Identification of Human T Cell Antigens for the Development of Vaccines against <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2008, 181, 7948-7957.	0.8	157
6	A Synthetic Adjuvant to Enhance and Expand Immune Responses to Influenza Vaccines. PLoS ONE, 2010, 5, e13677.	2.5	137
7	The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. Npj Vaccines, 2018, 3, 34.	6.0	135
8	Immunization with a Polyprotein Vaccine Consisting of the T-Cell Antigens Thiol-Specific Antioxidant, Leishmania major Stress-Inducible Protein 1, and Leishmania Elongation Initiation Factor Protects against Leishmaniasis. Infection and Immunity, 2002, 70, 4215-4225.	2.2	133
9	From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISHâ€F3+GLA‧E. Clinical and Translational Immunology, 2015, 4, e35.	3.8	131
10	Safety and immunogenicity of the novel tuberculosis vaccine ID93â€^+â€^GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respiratory Medicine,the, 2018, 6, 287-298.	10.7	122
11	Expression Cloning of an Immunodominant Family of <i>Mycobacterium tuberculosis</i> Antigens Using Human Cd4+ T Cells. Journal of Experimental Medicine, 2000, 191, 551-560.	8.5	116
12	A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, Low-Dose Protection against Zika. Molecular Therapy, 2018, 26, 2507-2522.	8.2	109
13	The Importance of Adjuvant Formulation in the Development of a Tuberculosis Vaccine. Journal of Immunology, 2012, 188, 2189-2197.	0.8	102
14	Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. Journal of Controlled Release, 2013, 172, 190-200.	9.9	101
15	Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids and Surfaces B: Biointerfaces, 2010, 75, 123-132.	5.0	97
16	Therapeutic Immunization against Mycobacterium tuberculosis Is an Effective Adjunct to Antibiotic Treatment. Journal of Infectious Diseases, 2013, 207, 1242-1252.	4.0	88
17	Schistosomiasis vaccine candidate Sm14/GLA-SE: Phase 1 safety and immunogenicity clinical trial in healthy, male adults. Vaccine, 2016, 34, 586-594.	3.8	85
18	The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Neglected Tropical Diseases, 2019, 13, e0007083.	3.0	78

#	Article	IF	CITATIONS
19	A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Scientific Reports, 2017, 7, 46426.	3.3	66
20	Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Molecular Therapy - Methods and Clinical Development, 2020, 18, 402-414.	4.1	63
21	A Dual TLR Agonist Adjuvant Enhances the Immunogenicity and Protective Efficacy of the Tuberculosis Vaccine Antigen ID93. PLoS ONE, 2014, 9, e83884.	2.5	60
22	The TLR4 Agonist Vaccine Adjuvant, GLA-SE, Requires Canonical and Atypical Mechanisms of Action for TH1 Induction. PLoS ONE, 2016, 11, e0146372.	2.5	57
23	Mucosal delivery switches the response to an adjuvanted tuberculosis vaccine from systemic TH1 to tissue-resident TH17 responses without impacting the protective efficacy. Vaccine, 2015, 33, 6570-6578.	3.8	53
24	Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants. Scientific Reports, 2016, 6, 39097.	3.3	53
25	Advancing Translational Science for Pulmonary Nontuberculous Mycobacterial Infections. A Road Map for Research. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 947-951.	5.6	53
26	Elimination of the cold-chain dependence of a nanoemulsion adjuvanted vaccine against tuberculosis by lyophilization. Journal of Controlled Release, 2014, 177, 20-26.	9.9	51
27	Prophylaxis of Mycobacterium tuberculosis H37Rv Infection in a Preclinical Mouse Model via Inhalation of Nebulized Bacteriophage D29. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	48
28	Safety and immunogenicity of the adjunct therapeutic vaccine ID93â€^+â€^GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respiratory Medicine,the, 2021, 9, 373-386.	10.7	46
29	A structureâ€function approach to optimizing TLR4 ligands for human vaccines. Clinical and Translational Immunology, 2016, 5, e108.	3.8	44
30	Overcoming the Neonatal Limitations of Inducing Germinal Centers through Liposome-Based Adjuvants Including C-Type Lectin Agonists Trehalose Dibehenate or Curdlan. Frontiers in Immunology, 2018, 9, 381.	4.8	43
31	Identification and characterization of novel recombinant vaccine antigens for immunization against genital <i>Chlamydia trachomatis</i> . FEMS Immunology and Medical Microbiology, 2009, 55, 258-270.	2.7	41
32	Protection and Long-Lived Immunity Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium tuberculosis Isolate. Vaccine Journal, 2016, 23, 137-147.	3.1	41
33	Diagnostics and the neglected tropical diseases roadmap: setting the agenda for 2030. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 129-135.	1.8	38
34	Immune Subdominant Antigens as Vaccine Candidates against <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2014, 193, 2911-2918.	0.8	35
35	Interferon Î ³ and Tumor Necrosis Factor Are Not Essential Parameters of CD4 ⁺ T-Cell Responses for Vaccine Control of Tuberculosis. Journal of Infectious Diseases, 2015, 212, 495-504.	4.0	35
36	Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis. Vaccine, 2016, 34, 2779-2786.	3.8	35

#	Article	IF	CITATIONS
37	CD11a and CD49d enhance the detection of antigen-specific T cells following human vaccination. Vaccine, 2017, 35, 4255-4261.	3.8	33
38	Long-term protective efficacy with a BCG-prime ID93/GLA-SE boost regimen against the hyper-virulent Mycobacterium tuberculosis strain K in a mouse model. Scientific Reports, 2019, 9, 15560.	3.3	32
39	A defined subunit vaccine that protects against vector-borne visceral leishmaniasis. Npj Vaccines, 2017, 2, 23.	6.0	31
40	Evaluation of diagnostic performance of rK28 ELISA using urine for diagnosis of visceral leishmaniasis. Parasites and Vectors, 2016, 9, 383.	2.5	30
41	Protection against Mycobacterium leprae Infection by the ID83/GLA-SE and ID93/GLA-SE Vaccines Developed for Tuberculosis. Infection and Immunity, 2014, 82, 3979-3985.	2.2	28
42	A Novel Synthetic TLR-4 Agonist Adjuvant Increases the Protective Response to a Clinical-Stage West Nile Virus Vaccine Antigen in Multiple Formulations. PLoS ONE, 2016, 11, e0149610.	2.5	28
43	Protection against Tuberculosis with Homologous or Heterologous Protein/Vector Vaccine Approaches Is Not Dependent on CD8+ T Cells. Journal of Immunology, 2013, 191, 2514-2525.	0.8	27
44	Cryogenic transmission electron microscopy of recombinant tuberculosis vaccine antigen with anionic liposomes reveals formation of flattened liposomes. International Journal of Nanomedicine, 2014, 9, 1367.	6.7	27
45	Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing Antibodies through Immunization. Cell Reports, 2019, 29, 3060-3072.e7.	6.4	26
46	Recombinant polymorphic membrane protein D in combination with a novel, second-generation lipid adjuvant protects against intra-vaginal Chlamydia trachomatis infection in mice. Vaccine, 2016, 34, 4123-4131.	3.8	25
47	Improved Immune Responses in Young and Aged Mice with Adjuvanted Vaccines against H1N1 Influenza Infection. Frontiers in Immunology, 2018, 9, 295.	4.8	22
48	Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K. Vaccine, 2016, 34, 2179-2187.	3.8	21
49	Prophylactic efficacy against Mycobacterium tuberculosis using ID93 and lipid-based adjuvant formulations in the mouse model. PLoS ONE, 2021, 16, e0247990.	2.5	20
50	Vaccination Produces CD4 T Cells with a Novel CD154–CD40-Dependent Cytolytic Mechanism. Journal of Immunology, 2015, 195, 3190-3197.	0.8	19
51	The stimulatory effect of the TLR4-mediated adjuvant glucopyranosyl lipid A is well preserved in old age. Biogerontology, 2016, 17, 177-187.	3.9	19
52	A phase 1 antigen dose escalation trial to evaluate safety, tolerability and immunogenicity of the leprosy vaccine candidate LepVax (LEP-F1Â+ÂGLA–SE) in healthy adults. Vaccine, 2020, 38, 1700-1707.	3.8	19
53	It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Frontiers in Immunology, 2022, 13, 840225.	4.8	19
54	Broadened immunity and protective responses with emulsion-adjuvanted H5 COBRA-VLP vaccines. Vaccine, 2017, 35, 5209-5216.	3.8	18

#	Article	IF	CITATIONS
55	Enhanced Anti-Mycobacterium tuberculosis Immunity over Time with Combined Drug and Immunotherapy Treatment. Vaccines, 2018, 6, 30.	4.4	17
56	Transcriptional profiling of TLR-4/7/8-stimulated guinea pig splenocytes and whole blood by bDNA assay. Journal of Immunological Methods, 2011, 373, 54-62.	1.4	15
57	Antigen presentation by B cells guides programing of memory CD4 ⁺ Tâ€cell responses to a TLR4â€agonist containing vaccine in mice. European Journal of Immunology, 2016, 46, 2719-2729.	2.9	15
58	Subunit vaccine protects against a clinical isolate of Mycobacterium avium in wild type and immunocompromised mouse models. Scientific Reports, 2021, 11, 9040.	3.3	15
59	The ID93 Tuberculosis Vaccine Candidate Does Not Induce Sensitivity to Purified Protein Derivative. Vaccine Journal, 2014, 21, 1309-1313.	3.1	14
60	Optimizing Immunization Strategies for the Induction of Antigen-Specific CD4 and CD8 T Cell Responses for Protection against Intracellular Parasites. Vaccine Journal, 2016, 23, 785-794.	3.1	14
61	Qualification of ELISA and neutralization methodologies to measure SARS-CoV-2 humoral immunity using human clinical samples. Journal of Immunological Methods, 2021, 499, 113160.	1.4	12
62	Vaccination of aged mice with adjuvanted recombinant influenza nucleoprotein enhances protective immunity. Vaccine, 2020, 38, 5256-5267.	3.8	11
63	Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms, 2021, 9, 2253.	3.6	10
64	Evaluation of the efficacy of RUTI and ID93/GLA-SE vaccines in tuberculosis treatment: in silico trial through UISS-TB simulator. , 2019, , .		6
65	Memory CD4 ⁺ T cells enhance Bâ€cell responses to drifting influenza immunization. European Journal of Immunology, 2019, 49, 266-276.	2.9	6
66	Vaccination inducing durable and robust antigen-specific Th1/Th17 immune responses contributes to prophylactic protection against <i>Mycobacterium avium</i> infection but is ineffective as an adjunct to antibiotic treatment in chronic disease. Virulence, 2022, 13, 808-832.	4.4	3