Richard D Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449437/publications.pdf

Version: 2024-02-01

97 papers 5,178 citations

35 h-index 71 g-index

97 all docs 97
docs citations

97 times ranked 8486 citing authors

#	Article	IF	CITATIONS
1	The Role of BRCA1 in the Cellular Response to Chemotherapy. Journal of the National Cancer Institute, 2004, 96, 1659-1668.	3.0	399
2	The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes and Development, 2005, 19, 2925-2940.	2.7	349
3	BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Research, 2003, 63, 6221-8.	0.4	339
4	Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer. Journal of the National Cancer Institute, 2017, 109, djw199.	3.0	338
5	Chk1 Suppresses a Caspase-2 Apoptotic Response to DNA Damage that Bypasses p53, Bcl-2, and Caspase-3. Cell, 2008, 133, 864-877.	13.5	295
6	DNA Repair Pathways in Clinical Practice: Lessons From Pediatric Cancer Susceptibility Syndromes. Journal of Clinical Oncology, 2006, 24, 3799-3808.	0.8	262
7	Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Molecular Cancer Therapeutics, 2006, 5, 952-961.	1.9	190
8	Development and Independent Validation of a Prognostic Assay for Stage II Colon Cancer Using Formalin-Fixed Paraffin-Embedded Tissue. Journal of Clinical Oncology, 2011, 29, 4620-4626.	0.8	178
9	RNA expression analysis from formalin fixed paraffin embedded tissues. Histochemistry and Cell Biology, 2008, 130, 435-445.	0.8	169
10	Prognostic and Predictive Biomarkers in Resected Colon Cancer: Current Status and Future Perspectives for Integrating Genomics into Biomarker Discovery. Oncologist, 2010, 15, 390-404.	1.9	155
11	Fanconi anemia pathway–deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. Journal of Clinical Investigation, 2007, 117, 1440-1449.	3.9	155
12	STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nature Communications, 2015, 6, 7736.	5.8	136
13	Chk1-Mediated Phosphorylation of FANCE Is Required for the Fanconi Anemia/BRCA Pathway. Molecular and Cellular Biology, 2007, 27, 3098-3108.	1.1	132
14	BRCA1: mechanisms of inactivation and implications for management of patients. Lancet, The, 2002, 360, 1007-1014.	6.3	115
15	Cdk1 Participates in BRCA1-Dependent S Phase Checkpoint Control in Response to DNA Damage. Molecular Cell, 2009, 35, 327-339.	4.5	109
16	CHK1 inhibition as a strategy for targeting fanconi anemia (FA) DNA repair pathway deficient tumors. Molecular Cancer, 2009, 8, 24.	7.9	103
17	Identification and Validation of an Anthracycline/Cyclophosphamide–Based Chemotherapy Response Assay in Breast Cancer. Journal of the National Cancer Institute, 2014, 106, djt335.	3.0	91
18	BRCA1 and implications for response to chemotherapy in ovarian cancer. Gynecologic Oncology, 2009, 113, 134-142.	0.6	78

#	Article	IF	Citations
19	BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene, 2012, 31, 3667-3678.	2.6	77
20	BRCA1 and c-Myc Associate to Transcriptionally Repress Psoriasin, a DNA Damage–Inducible Gene. Cancer Research, 2005, 65, 10265-10272.	0.4	76
21	Molecular subgroup of high-grade serous ovarian cancer (HGSOC) as a predictor of outcome following bevacizumab Journal of Clinical Oncology, 2014, 32, 5502-5502.	0.8	71
22	BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Research and Treatment, 2010, 122, 721-731.	1.1	68
23	Potentiation of Inflammatory CXCL8 Signalling Sustains Cell Survival in PTEN-deficient Prostate Carcinoma. European Urology, 2013, 64, 177-188.	0.9	67
24	BRCA1 is both a prognostic and predictive biomarker of response to chemotherapy in sporadic epithelial ovarian cancer. Gynecologic Oncology, 2011, 123, 492-498.	0.6	62
25	Targeting EGFR Induced Oxidative Stress by PARP1 Inhibition in Glioblastoma Therapy. PLoS ONE, 2010, 5, e10767.	1.1	59
26	The Complex Relationship between BRCA1 and ERÎ \pm in Hereditary Breast Cancer. Clinical Cancer Research, 2009, 15, 1514-1518.	3.2	58
27	Mechanistic Rationale to Target PTEN-Deficient Tumor Cells with Inhibitors of the DNA Damage Response Kinase ATM. Cancer Research, 2015, 75, 2159-2165.	0.4	58
28	T-box 2 represses NDRG1 through an EGR1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene, 2010, 29, 3252-3262.	2.6	57
29	The 2,5 oligoadenylate synthetase/RNaseL pathway is a novel effector of BRCA1- and interferon-l ³ -mediated apoptosis. Oncogene, 2005, 24, 5492-5501.	2.6	53
30	Association Between Results of a Gene Expression Signature Assay and Recurrence-Free Interval in Patients With Stage II Colon Cancer in Cancer and Leukemia Group B 9581 (Alliance). Journal of Clinical Oncology, 2016, 34, 3047-3053.	0.8	51
31	BRCA1 Interacts with and Is Required for Paclitaxel-Induced Activation of Mitogen-Activated Protein Kinase Kinase S. Cancer Research, 2004, 64, 4148-4154.	0.4	46
32	BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers. Nucleic Acids Research, 2013, 41, 8601-8614.	6.5	44
33	Automated Tumour Recognition and Digital Pathology Scoring Unravels New Role for PD-L1 in Predicting Good Outcome in ER-/HER2+ Breast Cancer. Journal of Oncology, 2018, 2018, 1-14.	0.6	44
34	NF-l ^o B is a critical mediator of BRCA1-induced chemoresistance. Oncogene, 2014, 33, 713-723.	2.6	41
35	Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer. Current Colorectal Cancer Reports, 2016, 12, 141-150.	1.0	40
36	The Î"Np63 Proteins Are Key Allies of BRCA1 in the Prevention of Basal-Like Breast Cancer. Cancer Research, 2011, 71, 1933-1944.	0.4	35

#	Article	IF	Citations
37	Tissue Biomarker Development in a Multicentre Trial Context: a Feasibility Study on the PETACC3 Stage II and III Colon Cancer Adjuvant Treatment Trial. Clinical Cancer Research, 2009, 15, 5528-5533.	3.2	30
38	Validation of the DNA Damage Immune Response Signature in Patients With Triple-Negative Breast Cancer From the SWOG 9313c Trial. Journal of Clinical Oncology, 2019, 37, 3484-3492.	0.8	30
39	A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer. Oncotarget, 2016, 7, 19884-19896.	0.8	30
40	Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi Anemia pathway. DNA Repair, 2011, 10, 1203-1212.	1.3	26
41	Molecular Subgroup of Primary Prostate Cancer Presenting with Metastatic Biology. European Urology, 2017, 72, 509-518.	0.9	26
42	Expression of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs. Cellular Oncology (Dordrecht), 2012, 35, 85-93.	2.1	25
43	Clinical Application of Poly(ADP-Ribose) Polymerase Inhibitors in High-Grade Serous Ovarian Cancer. Oncologist, 2016, 21, 586-593.	1.9	23
44	FES-related tyrosine kinase activates the insulin-like growth factor-1 receptor at sites of cell adhesion. Oncogene, 2018, 37, 3131-3150.	2.6	22
45	Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer. Oncotarget, 2018, 9, 4722-4736.	0.8	22
46	The clinical and molecular significance associated with STING signaling in breast cancer. Npj Breast Cancer, 2021, 7, 81.	2.3	21
47	Long-range Transcriptome Sequencing Reveals Cancer Cell Growth Regulatory Chimeric mRNA. Neoplasia, 2012, 14, 1087-49.	2.3	19
48	Generation of a non-small cell lung cancer transcriptome microarray. BMC Medical Genomics, $2008, 1, 20.$	0.7	18
49	Upregulation of Fanconi Anemia DNA Repair Genes in Melanoma Compared with Non-Melanoma Skin Cancer. Journal of Investigative Dermatology, 2011, 131, 2139-2142.	0.3	18
50	DNA Repair Deficiency in Breast Cancer: Opportunities for Immunotherapy. Journal of Oncology, 2019, 2019, 1-14.	0.6	18
51	Immune activation by DNA damage predicts response to chemotherapy and survival in oesophageal adenocarcinoma. Gut, 2019, 68, 1918-1927.	6.1	18
52	Role played by BRCA1 in regulating the cellular response to stress. Biochemical Society Transactions, 2003, 31, 257-262.	1.6	17
53	Defining the molecular evolution of extrauterine high grade serous carcinoma. Gynecologic Oncology, 2019, 155, 305-317.	0.6	17
54	A Novel Role for Cathepsin S as a Potential Biomarker in Triple Negative Breast Cancer. Journal of Oncology, 2019, 2019, 1-12.	0.6	16

#	Article	IF	CITATIONS
55	PICan: An integromics framework for dynamic cancer biomarker discovery. Molecular Oncology, 2015, 9, 1234-1240.	2.1	15
56	The role of PTEN as a cancer biomarker. Oncoscience, 2016, 3, 54-55.	0.9	15
57	PDLIM2 Is a Marker of Adhesion and \hat{l}^2 -Catenin Activity in Triple-Negative Breast Cancer. Cancer Research, 2019, 79, 2619-2633.	0.4	14
58	Activation of a cGAS-STING-mediated immune response predicts response to neoadjuvant chemotherapy in early breast cancer. British Journal of Cancer, 2022, 126, 247-258.	2.9	14
59	In-depth Clinical and Biological Exploration of DNA Damage Immune Response as a Biomarker for Oxaliplatin Use in Colorectal Cancer. Clinical Cancer Research, 2021, 27, 288-300.	3.2	13
60	Glucose transporter 1 expression as a marker of prognosis in oesophageal adenocarcinoma. Oncotarget, 2018, 9, 18518-18528.	0.8	13
61	Orthogonal targeting of EGFRvIII expressing glioblastomas through simultaneous EGFR and PLK1 inhibition. Oncotarget, 2015, 6, 11751-11767.	0.8	9
62	The musculoskeletal consequences of latissmus dorsi breast reconstruction in women following mastectomy for breast cancer. PLoS ONE, 2018, 13, e0202859.	1.1	9
63	Results of a phase II clinical trial of 6-mercaptopurine (6MP) and methotrexate in patients with BRCA-defective tumours. British Journal of Cancer, 2020, 122, 483-490.	2.9	8
64	Implications for Powering Biomarker Discovery Studies. Journal of Molecular Diagnostics, 2012, 14, 130-139.	1.2	7
65	A comprehensive systematic review and network meta-analysis: the role of anti-angiogenic agents in advanced epithelial ovarian cancer. Scientific Reports, 2022, 12, 3803.	1.6	7
66	Developing mRNA-based biomarkers from formalin-fixed paraffin-embedded tissue. Personalized Medicine, 2010, 7, 205-211.	0.8	6
67	Integrated molecular pathology: the Belfast model. Drug Discovery Today, 2015, 20, 1451-1454.	3.2	6
68	Clinical Tumor Staging of Adenocarcinoma of the Esophagus and Esophagogastric Junction. Journal of Clinical Oncology, 2015, 33, 1088-1088.	0.8	5
69	Delivering a researchâ€enabled multistakeholder partnership for enhanced patient care at a population level: The Northern Ireland Comprehensive Cancer Program. Cancer, 2016, 122, 664-673.	2.0	5
70	When the guardian becomes the enemy: Targeting ATM in PTEN-deficient cancers. Molecular and Cellular Oncology, 2016, 3, e1053595.	0.3	5
71	Multiomic Characterization of High-Grade Serous Ovarian Carcinoma Enables High-Resolution Patient Stratification. Clinical Cancer Research, 2022, 28, 3546-3556.	3.2	5
72	Association between ColDx assay result and recurrence-free interval in stage II colon cancer patients on CALGB (Alliance) 9581 Journal of Clinical Oncology, 2014, 32, 455-455.	0.8	4

#	Article	IF	Citations
73	Academic medicine - revolution, evolution or extinction?. Ulster Medical Journal, 2014, 83, 141-5.	0.2	4
74	Association of a DNA damage response deficiency (DDRD) assay and prognosis in early-stage esophageal adenocarcinoma Journal of Clinical Oncology, 2014, 32, 4015-4015.	0.8	3
75	Model selection for prognostic time-to-event gene signature discovery with applications in early breast cancer data. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 619-35.	0.2	2
76	Development of PARP Inhibitors for BRCA-Deficient Epithelial Ovarian Cancer., 2019,, 521-532.		2
77	Abstract 3787: Exploring the effect of chemotherapies on STING-dependent cytokine release. Cancer Research, 2018, 78, 3787-3787.	0.4	2
78	Impact of DNA repair deficiency signature on outcomes in triple negative breast cancer (TNBC) patients treated with AC chemotherapy (SWOG S9313) Journal of Clinical Oncology, 2017, 35, 529-529.	0.8	2
79	ATM Kinase Inhibition Preferentially Sensitises PTEN-Deficient Prostate Tumour Cells to Ionising Radiation. Cancers, 2021, 13, 79.	1.7	2
80	The biology of breast carcinoma. Cancer, 2003, 98, 1327-1328.	2.0	1
81	Platinum based chemotherapy selects for PDGFRα dependent angiogenesis Journal of Clinical Oncology, 2018, 36, 5578-5578.	0.8	1
82	A preoperative clinical staging and metabolic imaging model to predict prognosis in early-stage esophageal adenocarcinoma Journal of Clinical Oncology, 2014, 32, 63-63.	0.8	1
83	PD-L1 expression and response to neo-adjuvant chemotherapy in esophageal adenocarcinoma Journal of Clinical Oncology, 2017, 35, 4023-4023.	0.8	1
84	Targeting of survivin to overcome cisplatin resistance in esophageal adenocarcinoma Journal of Clinical Oncology, 2019, 37, e15535-e15535.	0.8	1
85	Gene therapy for breast and ovarian cancer. , 2002, , 372-383.		0
86	Reply to L. Casadaban et al. Journal of Clinical Oncology, 2017, 35, 1373-1374.	0.8	0
87	A DNA-damage immune response assay combined with PET biomarkers predicts response to neo-adjuvant chemotherapy and survival in oesophageal adenocarcinoma. Scientific Reports, 2021, 11, 13061.	1.6	0
88	Functional Interaction between FANCD2 and ATM in the DNA Damage Response Blood, 2005, 106, 181-181.	0.6	0
89	Modifier Genetics in Zebrafish Identify Chk1 and an Associated Survival Pathway as Targets for Pharmacotherapy of MDS/AML with P53 Mutations Blood, 2006, 108, 1432-1432.	0.6	0
90	Identification and validation of an assay predictive of response and prognosis following anthracycline-based chemotherapy for early breast cancer Journal of Clinical Oncology, 2013, 31, TPS11120-TPS11120.	0.8	0

#	Article	IF	CITATIONS
91	Discovery of prognostic and predictive tissue biomarkers in patients with resectable esophageal cancer Journal of Clinical Oncology, 2014, 32, 45-45.	0.8	O
92	Development of a pan-cancer 15 gene expression signature to detect a subgroup driven by EMT/MAPK signalling Journal of Clinical Oncology, 2017, 35, 11616-11616.	0.8	0
93	Assessment of conditional survival probability in resected esophageal adenocarcinoma Journal of Clinical Oncology, 2017, 35, 4030-4030.	0.8	0
94	Association of a DNA damage response deficiency (DDRD) assay with prognosis in resected esophageal and gastric adenocarcinoma Journal of Clinical Oncology, 2017, 35, 4026-4026.	0.8	0
95	Pan-cancer mesenchymal assay to predict response to MEK inhibitors Journal of Clinical Oncology, 2018, 36, 12111-12111.	0.8	0
96	Defining an IBD-like subgroup in consensus molecular subgroups of colorectal cancer and transcriptomic biomarker development for at-risk patients Journal of Clinical Oncology, 2019, 37, e15142-e15142.	0.8	0
97	Consensus gene expression analysis to identify key hallmarks of cancer in malignant melanoma Journal of Clinical Oncology, 2019, 37, e21045-e21045.	0.8	0