Tom Hasell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9448719/publications.pdf

Version: 2024-02-01

101 papers

10,335 citations

50 h-index 100 g-index

113 all docs

113 docs citations

113 times ranked 7644 citing authors

#	Article	IF	CITATIONS
1	Processes for coating surfaces with a copolymer made from sulfur and dicyclopentadiene. Polymer Chemistry, 2022, 13, 1320-1327.	3.9	17
2	Stretchable and Durable Inverse Vulcanized Polymers with Chemical and Thermal Recycling. Chemistry of Materials, 2022, 34, 1167-1178.	6.7	33
3	Dark Sulfur: Quantifying Unpolymerized Sulfur in Inverse Vulcanized Polymers. ACS Applied Polymer Materials, 2022, 4, 3169-3173.	4.4	12
4	Investigating the viability of sulfur polymers for the fabrication of photoactive, antimicrobial, water repellent coatings. Journal of Materials Chemistry B, 2022, 10, 4153-4162.	5 . 8	7
5	Incorporation of fillers to modify the mechanical performance of inverse vulcanised polymers. Polymer Chemistry, 2022, 13, 3930-3937.	3.9	9
6	Inverse vulcanised sulfur polymer nanoparticles prepared by antisolvent precipitation. Journal of Materials Chemistry A, 2022, 10, 13704-13710.	10.3	10
7	Inverse Vulcanization with SiO ₂ -Embedded Elemental Sulfur for Superhydrophobic, Anticorrosion, and Antibacterial Coatings. ACS Applied Polymer Materials, 2022, 4, 4901-4911.	4.4	13
8	Carbonisation of a polymer made from sulfur and canola oil. Chemical Communications, 2021, 57, 6296-6299.	4.1	13
9	Insulating Composites Made from Sulfur, Canola Oil, and Wool**. ChemSusChem, 2021, 14, 2352-2359.	6.8	29
10	Investigating the Role and Scope of Catalysts in Inverse Vulcanization. ACS Catalysis, 2021, 11, 4441-4455.	11.2	46
11	Mercury capture with an inverse vulcanized polymer formed from garlic oil, a bioderived comonomer. Reactive and Functional Polymers, 2021, 161, 104865.	4.1	15
12	Magnetic sulfur-doped carbons for mercury adsorption. Journal of Colloid and Interface Science, 2021, 603, 728-737.	9.4	17
13	Mesoporous knitted inverse vulcanised polymers. Chemical Communications, 2021, 57, 5059-5062.	4.1	12
14	Antibacterial Activity of Inverse Vulcanized Polymers. Biomacromolecules, 2021, 22, 5223-5233.	5.4	21
15	Inverse vulcanization below the melting point of sulfur. Materials Chemistry Frontiers, 2020, 4, 669-675.	5. 9	40
16	Inverse Vulcanized Polymers with Shape Memory, Enhanced Mechanical Properties, and Vitrimer Behavior. Angewandte Chemie - International Edition, 2020, 59, 13371-13378.	13.8	87
17	Inverse Vulcanized Polymers with Shape Memory, Enhanced Mechanical Properties, and Vitrimer Behavior. Angewandte Chemie, 2020, 132, 13473-13480.	2.0	6
18	Chemically induced repair, adhesion, and recycling of polymers made by inverse vulcanization. Chemical Science, 2020, 11, 5537-5546.	7.4	95

#	Article	IF	CITATIONS
19	Investigating the Antibacterial Properties of Inverse Vulcanized Sulfur Polymers. ACS Omega, 2020, 5, 5229-5234.	3.5	48
20	A ternary system for delayed curing inverse vulcanisation. Chemical Communications, 2019, 55, 10681-10684.	4.1	33
21	Sulfur polymer composites as controlled-release fertilisers. Organic and Biomolecular Chemistry, 2019, 17, 1929-1936.	2.8	109
22	Crosslinker Copolymerization for Property Control in Inverse Vulcanization. Chemistry - A European Journal, 2019, 25, 10433-10440.	3.3	88
23	Synthesis of a Large, Shape-Flexible, Solvatomorphic Porous Organic Cage. Crystal Growth and Design, 2019, 19, 3647-3651.	3.0	21
24	Catalytic inverse vulcanization. Nature Communications, 2019, 10, 647.	12.8	143
25	NMR relaxation and modelling study of the dynamics of SF6 and Xe in porous organic cages. Physical Chemistry Chemical Physics, 2019, 21, 24373-24382.	2.8	12
26	Macroporous sulfur polymers from a sodium chloride porogenâ€"a low cost, versatile remediation material. Environmental Science: Water Research and Technology, 2019, 5, 2142-2149.	2.4	19
27	Innentitelbild: Core-Shell Crystals of Porous Organic Cages (Angew. Chem. 35/2018). Angewandte Chemie, 2018, 130, 11250-11250.	2.0	0
28	High sulfur content polymers: The effect of crosslinker structure on inverse vulcanization. Journal of Polymer Science Part A, 2018, 56, 1777-1781.	2.3	72
29	Sustainable inverse-vulcanised sulfur polymers. RSC Advances, 2018, 8, 27892-27899.	3.6	85
30	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie, 2018, 130, 11398-11402.	2.0	14
31	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie - International Edition, 2018, 57, 11228-11232.	13.8	45
32	Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chemical Science, 2017, 8, 2640-2651.	7.4	115
33	Chirality as a tool for function in porous organic cages. Nanoscale, 2017, 9, 6783-6790.	5.6	31
34	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	11.3	68
35	Modular assembly of porous organic cage crystals: isoreticular quasiracemates and ternary co-crystal. CrystEngComm, 2017, 19, 4933-4941.	2.6	18
36	Inside information on xenon adsorption in porous organic cages by NMR. Chemical Science, 2017, 8, 5721-5727.	7.4	37

#	Article	IF	CITATIONS
37	Functional materials discovery using energy–structure–function maps. Nature, 2017, 543, 657-664.	27.8	348
38	Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture. Journal of Materials Chemistry A, 2017, 5, 11682-11692.	10.3	187
39	High surface area sulfur-doped microporous carbons from inverse vulcanised polymers. Journal of Materials Chemistry A, 2017, 5, 18603-18609.	10.3	47
40	Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chemistry, 2017, 9, 17-25.	13.6	122
41	Oriented Twoâ€Dimensional Porous Organic Cage Crystals. Angewandte Chemie, 2017, 129, 9519-9523.	2.0	13
42	Oriented Twoâ€Dimensional Porous Organic Cage Crystals. Angewandte Chemie - International Edition, 2017, 56, 9391-9395.	13.8	33
43	Porous Organic Cage Thin Films and Molecularâ€Sieving Membranes. Advanced Materials, 2016, 28, 2629-2637.	21.0	275
44	Molecular Sieves: Porous Organic Cage Thin Films and Molecular‧ieving Membranes (Adv. Mater.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
45	Porous inverse vulcanised polymers for mercury capture. Chemical Communications, 2016, 52, 5383-5386.	4.1	130
46	Functional porous composites by blending with solution-processable molecular pores. Chemical Communications, 2016, 52, 6895-6898.	4.1	25
47	Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. Journal of Materials Chemistry A, 2016, 4, 7665-7673.	10.3	126
48	Understanding static, dynamic and cooperative porosity in molecular materials. Chemical Science, 2016, 7, 4875-4879.	7.4	43
49	Peripheryâ€Functionalized Porous Organic Cages. Chemistry - A European Journal, 2016, 22, 16547-16553.	3.3	38
50	Hyperporous Carbons from Hypercrosslinked Polymers. Advanced Materials, 2016, 28, 9804-9810.	21.0	201
51	Porous organic cages: soluble, modular and molecular pores. Nature Reviews Materials, 2016, 1, .	48.7	603
52	Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 2016, 7, 12750.	12.8	133
53	Porous carbons from inverse vulcanised polymers. Microporous and Mesoporous Materials, 2016, 232, 189-195.	4.4	34
54	Porous Organic Cages for Sulfur Hexafluoride Separation. Journal of the American Chemical Society, 2016, 138, 1653-1659.	13.7	200

#	Article	IF	Citations
55	Trapping virtual pores by crystal retro-engineering. Nature Chemistry, 2015, 7, 153-159.	13.6	52
56	Porous Organic Cages for Gas Chromatography Separations. Chemistry of Materials, 2015, 27, 3207-3210.	6.7	169
57	Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties. Journal of Materials Chemistry A, 2015, 3, 4855-4864.	10.3	52
58	Dynamic flow synthesis of porous organic cages. Chemical Communications, 2015, 51, 17390-17393.	4.1	52
59	Tunable Porosity through Cooperative Diffusion in a Multicomponent Porous Molecular Crystal. Journal of Physical Chemistry C, 2015, 119, 22577-22586.	3.1	15
60	Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chemical Communications, 2015, 51, 1717-1720.	4.1	34
61	Network formation mechanisms in conjugated microporous polymers. Polymer Chemistry, 2014, 5, 6325-6333.	3.9	61
62	Conjugated Polymers of Intrinsic Microporosity (Câ€PIMs). Advanced Functional Materials, 2014, 24, 5219-5224.	14.9	89
63	Guest control of structure in porous organic cages. Chemical Communications, 2014, 50, 9465-9468.	4.1	65
64	Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nature Materials, 2014, 13, 954-960.	27.5	532
65	Acid- and Base-Stable Porous Organic Cages: Shape Persistence and pH Stability via Post-synthetic "Tying―of a Flexible Amine Cage. Journal of the American Chemical Society, 2014, 136, 7583-7586.	13.7	192
66	Controlling the Crystallization of Porous Organic Cages: Molecular Analogs of Isoreticular Frameworks Using Shape-Specific Directing Solvents. Journal of the American Chemical Society, 2014, 136, 1438-1448.	13.7	122
67	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	13.7	201
68	Shedding Light on Structure–Property Relationships for Conjugated Microporous Polymers: The Importance of Rings and Strain. Macromolecules, 2013, 46, 7696-7704.	4.8	44
69	High-pressure carbon dioxide uptake for porous organic cages: comparison of spectroscopic and manometric measurement techniques. Chemical Communications, 2013, 49, 9410.	4.1	43
70	Nanoporous Organic Polymer/Cage Composite Membranes. Angewandte Chemie - International Edition, 2013, 52, 1253-1256.	13.8	263
71	Molecular Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids. Journal of the American Chemical Society, 2013, 135, 17818-17830.	13.7	91
72	Dodecaamide Cages: Organic 12-Arm Building Blocks for Supramolecular Chemistry. Journal of the American Chemical Society, 2013, 135, 10007-10010.	13.7	50

#	Article	IF	CITATIONS
73	Soluble Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2012, 51, 12727-12731.	13.8	192
74	Reversible water uptake by a stable imine-based porous organic cage. Chemical Communications, 2012, 48, 4689.	4.1	91
75	Porous Organic Cage Nanocrystals by Solution Mixing. Journal of the American Chemical Society, 2012, 134, 588-598.	13.7	235
76	Solutionâ€Processable Molecular Cage Micropores for Hierarchically Porous Materials. Advanced Materials, 2012, 24, 5732-5737.	21.0	85
77	Porous organic cage crystals: characterising the porous crystal surface. Chemical Communications, 2012, 48, 11948.	4.1	16
78	Alkylated organic cages: from porous crystals to neat liquids. Chemical Science, 2012, 3, 2153.	7.4	123
79	Porous Organic Alloys. Angewandte Chemie - International Edition, 2012, 51, 7154-7157.	13.8	87
80	Molecular Doping of Porous Organic Cages. Journal of the American Chemical Society, 2011, 133, 14920-14923.	13.7	196
81	Porous organic molecular solids by dynamic covalent scrambling. Nature Communications, 2011, 2, 207.	12.8	155
82	Modular and predictable assembly of porous organic molecular crystals. Nature, 2011, 474, 367-371.	27.8	452
83	Metal–Organic Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2011, 50, 1072-1075.	13.8	318
84	On–Off Porosity Switching in a Molecular Organic Solid. Angewandte Chemie - International Edition, 2011, 50, 749-753.	13.8	176
85	Cover Picture: On-Off Porosity Switching in a Molecular Organic Solid (Angew. Chem. Int. Ed. 3/2011). Angewandte Chemie - International Edition, 2011, 50, 555-555.	13.8	0
86	Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous and Mesoporous Materials, 2010, 132, 132-136.	4.4	93
87	Triply interlocked covalent organic cages. Nature Chemistry, 2010, 2, 750-755.	13.6	230
88	Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing. Chemistry of Materials, 2010, 22, 557-564.	6.7	128
89	A Metalâ^'Organic Framework with a Covalently Prefabricated Porous Organic Linker. Journal of the American Chemical Society, 2010, 132, 12773-12775.	13.7	88
90	Porous organic cages. Nature Materials, 2009, 8, 973-978.	27.5	984

Tom Hasell

#	Article	IF	CITATION
91	Deposition in supercritical fluids: from silver to semiconductors. Journal of Materials Chemistry, 2009, 19, 8560.	6.7	25
92	Silver nanoparticle impregnated polycarbonate substrates for plasmonic applications. , 2009, , .		1
93	Silver Nanoparticle Impregnated Polycarbonate Substrates for Surface Enhanced Raman Spectroscopy. Advanced Functional Materials, 2008, 18, 1265-1271.	14.9	89
94	A novel synthetic route to metal–polymer nanocomposites by in situ suspension and bulk polymerizations. European Polymer Journal, 2008, 44, 1331-1336.	5.4	34
95	Preparation of hybrid polymer nanocomposite microparticles by a nanoparticle stabilised dispersion polymerisation. Journal of Materials Chemistry, 2008, 18, 998.	6.7	33
96	Time and spectrally resolved enhanced fluorescence using silver nanoparticle impregnated polycarbonate substrates. Applied Physics Letters, 2008, 93, .	3.3	2
97	Surface-Enhanced Raman Spectroscopy using silver impregnated polycarbonate substrates., 2007,,.		0
98	Preparation of polymer–nanoparticle composite beads by a nanoparticle-stabilised suspension polymerisation. Journal of Materials Chemistry, 2007, 17, 4382.	6.7	44
99	Novel one pot synthesis of silver nanoparticle–polymer composites by supercritical CO2 polymerisation in the presence of a RAFT agent. Chemical Communications, 2007, , 3933.	4.1	36
100	A facile synthetic route to aqueous dispersions of silver nanoparticles. Materials Letters, 2007, 61, 4906-4910.	2.6	38
101	Microstructural characterisation of silver/polymer nanocomposites prepared using supercritical carbon dioxide. Journal of Physics: Conference Series, 2006, 26, 276-279.	0.4	7