
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9448677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy. Life Science Alliance, 2022, 5, e202101287.	2.8	25
2	Protein degradation on the global scale. Molecular Cell, 2022, 82, 1414-1423.	9.7	29
3	Membrane compartmentalisation of the ubiquitin system. Seminars in Cell and Developmental Biology, 2022, 132, 171-184.	5.0	6
4	The deubiquitylase USP9X controls ribosomal stalling. Journal of Cell Biology, 2021, 220, .	5.2	20
5	The PINK1 repertoire: Not just a one trick pony. BioEssays, 2021, 43, e2100168.	2.5	9
6	USP28 deletion and small-molecule inhibition destabilizes c-MYC and elicits regression of squamous cell lung carcinoma. ELife, 2021, 10, .	6.0	25
7	Data mining for traffic information. Traffic, 2020, 21, 162-168.	2.7	5
8	USP30 sets a trigger threshold for PINK1–PARKIN amplification of mitochondrial ubiquitylation. Life Science Alliance, 2020, 3, e202000768.	2.8	72
9	New aspects of USP30 biology in the regulation of pexophagy. Autophagy, 2019, 15, 1634-1637.	9.1	10
10	Breaking the chains: deubiquitylating enzyme specificity begets function. Nature Reviews Molecular Cell Biology, 2019, 20, 338-352.	37.0	512
11	The deubiquitylase USP15 regulates topoisomerase II alpha to maintain genome integrity. Oncogene, 2018, 37, 2326-2342.	5.9	29
12	A Chlamydia effector combining deubiquitination and acetylation activities induces Golgi fragmentation. Nature Microbiology, 2018, 3, 1377-1384.	13.3	55
13	Dual role of <scp>USP</scp> 30 in controlling basal pexophagy and mitophagy. EMBO Reports, 2018, 19,	4.5	135
14	HRS–WASH axis governs actin-mediated endosomal recycling and cell invasion. Journal of Cell Biology, 2018, 217, 2549-2564.	5.2	46
15	Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS Journal, 2017, 284, 1753-1766.	4.7	36
16	Quantitative proteomic analysis of Parkin substrates in Drosophila neurons. Molecular Neurodegeneration, 2017, 12, 29.	10.8	77
17	Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature, 2017, 550, 481-486.	27.8	332
18	The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. Journal of Cancer, 2016, 7, 2388-2407.	2.5	11

#	Article	IF	CITATIONS
19	The centrosomal Deubiquitylase USP21 regulates Gli1 transcriptional activity and stability Journal of Cell Science, 2016, 129, 4001-4013.	2.0	30
20	Bimodal antagonism of PKA signalling by ARHGAP36. Nature Communications, 2016, 7, 12963.	12.8	33
21	The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL. Circulation Research, 2016, 118, 410-419.	4.5	43
22	Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. ELife, 2016, 5, .	6.0	42
23	Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. Journal of Proteome Research, 2015, 14, 5263-5272.	3.7	12
24	The demographics of the ubiquitin system. Trends in Cell Biology, 2015, 25, 417-426.	7.9	255
25	<scp>USP</scp> 30 deubiquitylates mitochondrial <scp>P</scp> arkin substrates and restricts apoptotic cell death. EMBO Reports, 2015, 16, 618-627.	4.5	136
26	Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget, 2015, 6, 13757-13771.	1.8	48
27	<scp>USP8</scp> Controls the Trafficking and Sorting ofÂLysosomal Enzymes. Traffic, 2014, 15, 879-888.	2.7	25
28	Ubiquitin code assembly and disassembly. Current Biology, 2014, 24, R215-R220.	3.9	68
29	The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells. Oncogene, 2014, 33, 4265-4272.	5.9	60
30	Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nature Cell Biology, 2014, 16, 1016-1026.	10.3	134
31	Plasticity of Mammary Cell Boundaries Governed by EGF and Actin Remodeling. Cell Reports, 2014, 8, 1722-1730.	6.4	11
32	Recruitment of UBPY and ESCRT Exchange Drive HD-PTP-Dependent Sorting of EGFR to the MVB. Current Biology, 2013, 23, 453-461.	3.9	99
33	Deubiquitylases From Genes to Organism. Physiological Reviews, 2013, 93, 1289-1315.	28.8	350
34	The deubiquitylase USP15 stabilizes newly synthesized REST and rescues its expression at mitotic exit. Cell Cycle, 2013, 12, 1964-1977.	2.6	44
35	Regulation of Endocytic Trafficking and Signalling by Deubiquitylating Enzymes. , 2013, , 245-259.		0
36	Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Molecular Biology of the Cell, 2012, 23, 1095-1103.	2.1	106

#	Article	IF	CITATIONS
37	Cellular functions of the DUBs. Journal of Cell Science, 2012, 125, 277-286.	2.0	188
38	Direct and Indirect Control of Mitogen-activated Protein Kinase Pathway-associated Components, BRAP/IMP E3 Ubiquitin Ligase and CRAF/RAF1 Kinase, by the Deubiquitylating Enzyme USP15. Journal of Biological Chemistry, 2012, 287, 43007-43018.	3.4	44
39	Governance of Endocytic Trafficking and Signaling by Reversible Ubiquitylation. Developmental Cell, 2012, 23, 457-467.	7.0	159
40	Selective protein degradation in cell signalling. Seminars in Cell and Developmental Biology, 2012, 23, 509-514.	5.0	15
41	Moving In With Ubiquitin. Traffic, 2011, 12, 135-136.	2.7	1
42	lsoform‣pecific Localization of the Deubiquitinase USP33 to the Golgi Apparatus. Traffic, 2011, 12, 1563-1574.	2.7	24
43	Structural variability of the ubiquitin specific protease DUSP-UBL double domains. FEBS Letters, 2011, 585, 3385-3390.	2.8	23
44	Emerging roles of deubiquitinases in cancerâ€associated pathways. IUBMB Life, 2010, 62, 140-157.	3.4	141
45	Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 2010, 6, 506-522.	9.1	566
46	Ubiquitin: Same Molecule, Different Degradation Pathways. Cell, 2010, 143, 682-685.	28.9	449
47	Phosphoinositides and the endocytic pathway. Experimental Cell Research, 2009, 315, 1627-1631.	2.6	41
48	Deubiquitinase Activities Required for Hepatocyte Growth Factor-Induced Scattering of Epithelial Cells. Current Biology, 2009, 19, 1463-1466.	3.9	50
49	Ab initio protein modelling reveals novel human MIT domains. FEBS Letters, 2009, 583, 872-878.	2.8	17
50	Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 2009, 10, 550-563.	37.0	1,722
51	PIKfyve Regulation of Endosomeâ€Linked Pathways. Traffic, 2009, 10, 883-893.	2.7	186
52	Analysis of Articulation Between Clathrin and Retromer in Retrograde Sorting on Early Endosomes. Traffic, 2009, 10, 1868-1880.	2.7	106
53	Regulation of ErbB2 Receptor Status by the Proteasomal DUB POH1. PLoS ONE, 2009, 4, e5544.	2.5	42
54	Multivesicular bodies. Current Biology, 2008, 18, R402-R404.	3.9	17

#	Article	IF	CITATIONS
55	Deciphering histone 2A deubiquitination. Genome Biology, 2008, 9, 202.	9.6	14
56	The MIT Domain of UBPY Constitutes a CHMP Binding and Endosomal Localization Signal Required for Efficient Epidermal Growth Factor Receptor Degradation. Journal of Biological Chemistry, 2007, 282, 30929-30937.	3.4	136
57	The emerging shape of the ESCRT machinery. Nature Reviews Molecular Cell Biology, 2007, 8, 355-368.	37.0	632
58	Control of growth factor receptor dynamics by reversible ubiquitination. Biochemical Society Transactions, 2006, 34, 754-756.	3.4	25
59	Activation of the Endosome-Associated Ubiquitin Isopeptidase AMSH by STAM, a Component of the Multivesicular Body-Sorting Machinery. Current Biology, 2006, 16, 160-165.	3.9	190
60	Endocytosis: the DUB version. Trends in Cell Biology, 2006, 16, 551-559.	7.9	235
61	The Ubiquitin Isopeptidase UBPY Regulates Endosomal Ubiquitin Dynamics and Is Essential for Receptor Down-regulation. Journal of Biological Chemistry, 2006, 281, 12618-12624.	3.4	216
62	Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosomerelated functions. Journal of Cell Science, 2006, 119, 2953-2959.	2.0	85
63	Growth factors induce differential phosphorylation profiles of the Hrs–STAM complex: a common node in signalling networks with signal-specific properties. Biochemical Journal, 2005, 389, 629-636.	3.7	51
64	Analysis of phosphoinositide binding domain properties within the myotubularin-related protein MTMR3. Journal of Cell Science, 2005, 118, 2005-2012.	2.0	67
65	Ubiquilin recruits Eps15 into ubiquitin-rich cytoplasmic aggregates via a UIM-UBL interaction. Journal of Cell Science, 2005, 118, 4437-4450.	2.0	57
66	Met/Hepatocyte Growth Factor Receptor Ubiquitination Suppresses Transformation and Is Required for Hrs Phosphorylation. Molecular and Cellular Biology, 2005, 25, 9632-9645.	2.3	173
67	Ubiquitin and endocytic protein sorting. Essays in Biochemistry, 2005, 41, 81-98.	4.7	56
68	Ubiquitin and endocytic protein sorting. Essays in Biochemistry, 2005, 41, 81.	4.7	65
69	AMSH is an endosome-associated ubiquitin isopeptidase. Journal of Cell Biology, 2004, 166, 487-492.	5.2	337
70	The Met Receptor Degradation Pathway. Journal of Biological Chemistry, 2004, 279, 52835-52839.	3.4	58
71	Hrs function: viruses provide the clue. Trends in Cell Biology, 2003, 13, 603-606.	7.9	52
72	Endosomal Dynamics of Met Determine Signaling Output. Molecular Biology of the Cell, 2003, 14, 1346-1354.	2.1	104

#	Article	IF	CITATIONS
73	The UIM domain of Hrs couples receptor sorting to vesicle formation. Journal of Cell Science, 2003, 116, 4169-4179.	2.0	164
74	Bilayered Clathrin Coats on Endosomal Vacuoles Are Involved in Protein Sorting toward Lysosomes. Molecular Biology of the Cell, 2002, 13, 1313-1328.	2.1	319
75	Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene, 2001, 20, 2761-2770.	5.9	159
76	Characterization of MTMR3. Current Biology, 2001, 11, 1600-1605.	3.9	141