Alessio Valentini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9447605/publications.pdf

Version: 2024-02-01

89 papers 3,780 citations

186265 28 h-index 59 g-index

89 all docs 89 docs citations

89 times ranked 4838 citing authors

#	Article	IF	CITATIONS
1	Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science, 2009, 324, 528-532.	12.6	746
2	A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology, 2003, 9, 525-535.	9.5	465
3	Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, 2015, 46, 110-121.	1.7	228
4	Are cattle, sheep, and goats endangered species?. Molecular Ecology, 2008, 17, 275-284.	3.9	217
5	Genomic imputation and evaluation using high-density Holstein genotypes. Journal of Dairy Science, 2013, 96, 668-678.	3.4	163
6	AFLPâ,,¢ markers for DNA fingerprinting in cattle. Animal Genetics, 1997, 28, 418-426.	1.7	147
7	Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mammalian Genome, 2003, 14, 392-395.	2.2	82
8	New Insights on Water Buffalo Genomic Diversity and Post-Domestication Migration Routes From Medium Density SNP Chip Data. Frontiers in Genetics, 2018, 9, 53.	2.3	79
9	Genetic diversity of Italian goat breeds assessed with a medium-density SNP chip. Genetics Selection Evolution, 2015, 47, 62.	3.0	72
10	Molecular identification of vaginal fluid by microbial signature. Forensic Science International: Genetics, 2012, 6, 559-564.	3.1	70
11	Proteomics and Transcriptomics Investigation on <i>longissimus</i> Muscles in Large White and Casertana Pig Breeds. Journal of Proteome Research, 2010, 9, 6450-6466.	3.7	58
12	Assessing genetic diversity in Italian goat populations using AFLP®markers. Animal Genetics, 2001, 32, 281-288.	1.7	57
13	The environmental biological signature: NGS profiling for forensic comparison of soils. Forensic Science International, 2014, 240, 41-47.	2.2	55
14	Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Animal Genetics, 2000, 31, 396-399.	1.7	52
15	Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC Genetics, 2009, 10, 7.	2.7	52
16	Relative extended haplotype homozygosity signals across breeds reveal dairy and beef specific signatures of selection. Genetics Selection Evolution, 2015, 47, 25.	3.0	49
17	Identification of a Short Region on Chromosome 6 Affecting Direct Calving Ease in Piedmontese Cattle Breed. PLoS ONE, 2012, 7, e50137.	2.5	49
18	Massive screening of copy number population-scale variation in Bos taurus genome. BMC Genomics, 2013, 14, 124.	2.8	48

#	Article	IF	Citations
19	Differentiation of European cattle by AFLP fingerprinting. Animal Genetics, 2007, 38, 60-66.	1.7	44
20	Use of microsatellites for genetic variation and inbreeding analysis in Sarda sheep flocks of central Italy. Journal of Animal Breeding and Genetics, 2003, 120, 425-432.	2.0	41
21	Genetic diversity of Chinese indigenous goat breeds based on microsatellite markers. Journal of Animal Breeding and Genetics, 2004, 121, 350-355.	2.0	41
22	Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Animal Genetics, 2002, 33, 280-286.	1.7	39
23	Comparative proteomics and transcriptomics analyses of livers from two different Bos taurus breeds: "Chianina and Holstein Friesianâ€, Journal of Proteomics, 2009, 73, 309-322.	2.4	39
24	Transcriptomic investigation of meat tenderness in two Italian cattle breeds. Animal Genetics, 2016, 47, 273-287.	1.7	37
25	Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livestock Science, 2013, 154, 34-44.	1.6	32
26	Microarrays and high-throughput transcriptomic analysis in species with incomplete availability of genomic sequences. New Biotechnology, 2009, 25, 272-279.	4.4	30
27	Exploring polymorphisms and effects of candidate genes on milk fat quality in dairy sheep. Journal of Dairy Science, 2010, 93, 3834-3845.	3.4	30
28	Genes involved in muscle lipid composition in 15 European <i>Bos taurus</i> breeds. Animal Genetics, 2013, 44, 493-501.	1.7	30
29	Discovery, characterization and validation of single nucleotide polymorphisms within 206 bovine genes that may be considered as candidate genes for beef production and quality. Animal Genetics, 2009, 40, 486-491.	1.7	29
30	Sequence analysis of myostatin promoter in cattle. Cytogenetic and Genome Research, 2003, 102, 48-52.	1.1	28
31	Characterization of 37 Breed-Specific Single-Nucleotide Polymorphisms in Sheep. Journal of Heredity, 2006, 97, 531-534.	2.4	28
32	Comparison of Milk Fat Globule Membrane (MFGM) Proteins of Chianina and Holstein Cattle Breed Milk Samples Through Proteomics Methods. Nutrients, 2009, 1, 302-315.	4.1	28
33	Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs). Scientific World Journal, The, 2011, 11, 1641-1659.	2.1	27
34	Detection of selection signatures in Piemontese and Marchigiana cattle, two breeds with similar production aptitudes but different selection histories. Genetics Selection Evolution, 2015, 47, 52.	3.0	27
35	A second generation radiation hybrid map to aid the assembly of the bovine genome sequence. BMC Genomics, 2006, 7, 283.	2.8	26
36	Signatures of selection in five Italian cattle breeds detected by a 54K SNP panel. Molecular Biology Reports, 2014, 41, 957-965.	2.3	26

#	Article	IF	Citations
37	Mitochondrial DNA of seven Italian sheep breeds shows faint signatures of domestication and suggests recent breed formation. Mitochondrial DNA, 2013, 24, 577-583.	0.6	25
38	Signatures of selection? Patterns of microsatellite diversity on a chromosome containing a selected locus. Heredity, 2003, 90, 350-358.	2.6	24
39	Geographical patterning of sixteen goat breeds from Italy, Albania and Greece assessed by Single Nucleotide Polymorphisms. BMC Ecology, 2009, 9, 20.	3.0	24
40	Relationships between Podolic cattle breeds assessed by single nucleotide polymorphisms (SNPs) genotyping. Journal of Animal Breeding and Genetics, 2010, 127, 481-488.	2.0	24
41	Assessment of population structure by single nucleotide polymorphisms (SNPs) in goat breedsâ ⁻ †. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 833, 117-120.	2.3	23
42	Genetic variation and relationships among Turkish water buffalo populations. Animal Genetics, 2010, 41, 93-96.	1.7	22
43	Spatial Trends of Genetic Variation of Domestic Ruminants in Europe. Diversity, 2010, 2, 932-945.	1.7	22
44	Forensic interlaboratory evaluation of the ForFLUID kit for vaginal fluids identification. Journal of Clinical Forensic and Legal Medicine, 2014, 21, 60-63.	1.0	22
45	Imputation accuracy is robust to cattle reference genome updates. Animal Genetics, 2015, 46, 69-72.	1.7	20
46	Genome wide association study on beef production traits in Marchigiana cattle breed. Journal of Animal Breeding and Genetics, 2017, 134, 43-48.	2.0	20
47	Allele frequencies and diversity parameters of 27 single nucleotide polymorphisms within and across goat breeds. Molecular Ecology Notes, 2006, 6, 992-997.	1.7	19
48	Polymorphisms within the Toll-Like Receptor (TLR)-2, -4, and -6 Genes in Cattle. Diversity, 2009, 1, 7-18.	1.7	18
49	Characterization of single nucleotide polymorphisms in sheep and their variation as evidence of selection. Animal Genetics, 2006, 37, 290-292.	1.7	17
50	Random amplified polymorphic DNA (RAPD) interpretation requires a sensitive method for the detection of amplified DNA. Electrophoresis, 1996, 17, 1553-1554.	2.4	16
51	Skeletal muscle transcriptional profiles in two Italian beef breeds, Chianina and Maremmana, reveal breed specific variation. Molecular Biology Reports, 2016, 43, 253-268.	2.3	16
52	Analysis of candidate SNPs affecting milk and functional traits in the dual-purpose Italian Simmental cattle. Livestock Science, 2015, 173, 1-8.	1.6	15
53	Use of canonical discriminant analysis to study signatures of selection in cattle. Genetics Selection Evolution, 2016, 48, 58.	3.0	14
54	Promoter polymorphisms in genes involved in porcine myogenesis influence their transcriptional activity. BMC Genetics, 2014, 15, 119.	2.7	12

#	Article	IF	CITATIONS
55	Application of AFLP® technology to radiation hybrid mapping. Chromosome Research, 2004, 12, 285-297.	2.2	11
56	A novel point mutation within the EDA gene causes an exon dropping in mature RNA in Holstein Friesian cattle breed affected by X-linked anhidrotic ectodermal dysplasia. BMC Veterinary Research, 2011, 7, 35.	1.9	11
57	Association between single nucleotide polymorphisms (SNPs) and milk production traits in Italian Brown cattle. Livestock Science, 2013, 157, 93-99.	1.6	10
58	Microsatellite genotyping of medieval cattle from central Italy suggests an old origin of Chianina and Romagnola cattle. Frontiers in Genetics, 2015, 6, 68.	2.3	10
59	Telomere Length Diversity in Cattle Breeds. Diversity, 2010, 2, 1118-1129.	1.7	9
60	Genetic characterization and structure of the Italian Podolian cattle breed and its relationship with some major European breeds. Italian Journal of Animal Science, 2011, 10, e54.	1.9	8
61	Microarray gene expression profiling of neural tissues in bovine spastic paresis. BMC Veterinary Research, 2013, 9, 122.	1.9	8
62	Use of principal component approach to predict direct genomic breeding values for beef traits in Italian Simmental cattle1. Journal of Animal Science, 2013, 91, 29-37.	0.5	8
63	Mitochondrial DNA analysis of medieval sheep ($\langle i \rangle$ Ovis aries $\langle i \rangle$) in central Italy reveals the predominance of haplogroup B already in the Middle Ages. Animal Genetics, 2015, 46, 329-332.	1.7	8
64	Gallop Racing Shifts Mature mRNA towards Introns: Does Exercise-Induced Stress Enhance Genome Plasticity?. Genes, 2020, 11, 410.	2.4	7
65	Detection of QTL for milk protein percentage in Italian Friesian cattle by AFLP markers and selective genotyping. Journal of Dairy Research, 2008, 75, 430-438.	1.4	6
66	A Tool for Sheep Product Quality: Custom Microarrays from Public Databases. Nutrients, 2009, 1, 235-250.	4.1	6
67	Structural and Dynamic Characterization of the C313Y Mutation in Myostatin Dimeric Protein, Responsible for the "Double Muscle―Phenotype in Piedmontese Cattle. Frontiers in Genetics, 2016, 7, 14.	2.3	6
68	Evidence of distinct gene functional patterns in GCâ€poor and GCâ€rich isochores in Bos taurus. Animal Genetics, 2020, 51, 358-368.	1.7	6
69	Phenotypic and genotypic background underlying variations in fatty acid composition and sensory parameters in European bovine breeds. Journal of Animal Science and Biotechnology, 2014, 5, 20.	5.3	5
70	Structural and dynamic analysis of G558R mutation in chicken <i>TSHR</i> gene shows altered signal transduction and corroborates its role as a domestication gene. Animal Genetics, 2020, 51, 51-57.	1.7	5
71	Comparison of Milk Fat Globule Membrane (MFGM) proteins in milk samples of Chianina and Holstein cattle breeds across three lactation phases through 2D IEF SDS PAGE — A preliminary study. Food Research International, 2013, 54, 1280-1286.	6.2	4
72	Is there a relation between genetic or social groups of mallard ducks and the circulation of low pathogenic avian influenza viruses?. Veterinary Microbiology, 2014, 170, 418-424.	1.9	4

#	Article	IF	Citations
73	Demographic structure and population dynamics of Maremmana cattle local breed after 35 years of traditional selection. Livestock Science, 2020, 232, 103903.	1.6	4
74	Effect of some candidate genes on meat characteristics of three cattle breeds. Italian Journal of Animal Science, 2009, 8, 81-83.	1.9	3
75	Ancient DNA: genomic amplification of Roman and medieval bovine bones. Italian Journal of Animal Science, 2007, 6, 179-181.	1.9	2
76	Traceability of the PGI product "Vitellone Bianco dell'Appennino Centrale―by SNP markers. Italian Journal of Animal Science, 2007, 6, 174-174.	1.9	2
77	SNPs identification in swine leptin 5' flanking region and transcriptional activity of naturally occurring promoter haplotypes. Italian Journal of Animal Science, 2011, 10, e49.	1.9	2
78	Landscape Genomics in Livestock. , 0, , .		2
79	Elite Food Between the Late Middle Ages and Renaissance: Some Case Studies from Latium. Environmental Archaeology, 0, , 1-15.	1.2	2
80	Identification of putative genes involved in bovine spastic paresis through microarray analysis. Italian Journal of Animal Science, 2007, 6, 183-183.	1.9	2
81	A simple PCR-RFLP test for direct identification of Melanocortin Receptor 1 (MC1R) alleles causing red coat colour in Holstein cattle. Italian Journal of Animal Science, 2003, 2, 151-155.	1.9	1
82	Polymorphisms in genes affecting meat quality in European beef breeds. Italian Journal of Animal Science, 2005, 4, 34-36.	1.9	1
83	Characterization of single-nucleotide polymorphisms in 20 genes affecting milk quality in cattle, sheep, goat and buffalo. Italian Journal of Animal Science, 2007, 6, 160-160.	1.9	1
84	SNP included in candidate genes involved in muscle, lipid and energy metabolism behave like neutral markers. Animal Production Science, 2015, 55, 1164.	1.3	1
85	Was the Cinta Senese Pig Already a Luxury Food in the Late Middle Ages? Ancient DNA and Archaeozoological Evidence from Central Italy. Genes, 2020, 11, 85.	2.4	1
86	Cell cultures harbouring constructs of different pig promoter polymorphisms show different transcriptional efficiency in gene reporter systems. Italian Journal of Animal Science, 2007, 6, 94-94.	1.9	0
87	Structure of cattle, sheep, goat and buffalo populations using single nucleotide polymorphisms in genes affecting lipid metabolism. Italian Journal of Animal Science, 2007, 6, 159-159.	1.9	0
88	Missense mutations of NCPAG gene affect calving ease in Piedmontese cattle: preliminary evidences. Italian Journal of Animal Science, 2018, 17, 301-305.	1.9	0
89	European cattle breed cluster accordingly to their meat quality parameters. Italian Journal of Animal Science, 2007, 6, 490-490.	1.9	0