Johannes H Hegemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9447368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	27.8	3,938
2	Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 1999, 285, 901-906.	12.6	3,761
3	A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Research, 1996, 24, 2519-2524.	14.5	1,512
4	A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 2002, 30, 23e-23.	14.5	855
5	Functional selection and analysis of yeast centromeric DNA. Cell, 1985, 42, 913-921.	28.9	270
6	Mal3, the Fission Yeast Homologue of the Human APC-interacting Protein EB-1 Is Required for Microtubule Integrity and the Maintenance of Cell Form. Journal of Cell Biology, 1997, 139, 717-728.	5.2	208
7	The centromere of budding yeast. BioEssays, 1993, 15, 451-460.	2.5	160
8	Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Molecular Genetics and Genomics, 1999, 262, 683-702.	2.4	143
9	Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs. Molecular Microbiology, 2010, 78, 1004-1017.	2.5	86
10	The <i>Chlamydia</i> outer membrane protein OmcB is required for adhesion and exhibits biovarâ€specific differences in glycosaminoglycan binding. Molecular Microbiology, 2008, 67, 403-419.	2.5	85
11	Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. Glycobiology, 1999, 9, 617-625.	2.5	82
12	Delete and Repeat: A Comprehensive Toolkit for Sequential Gene Knockout in the Budding Yeast Saccharomyces cerevisiae. Methods in Molecular Biology, 2011, 765, 189-206.	0.9	79
13	The Chlamydia pneumoniae Invasin Protein Pmp21 Recruits the EGF Receptor for Host Cell Entry. PLoS Pathogens, 2013, 9, e1003325.	4.7	76
14	All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show speciesâ€specific function. MicrobiologyOpen, 2014, 3, 544-556.	3.0	68
15	Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5296-5300.	7.1	65
16	Antigenic and molecular analyses of different Chlamydia pneumoniae strains. Journal of Clinical Microbiology, 1997, 35, 620-623.	3.9	62
17	Chromatin digestion with restriction endonucleases reveals 150–160 bp of protected DNA in the centromere of chromosome XIV in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1989, 219, 153-160.	2.4	56
18	Rapid Detection of Chlamydia pneumoniae by PCR-Enzyme Immunoassay. Journal of Clinical Microbiology, 1998, 36, 1890-1894.	3.9	51

JOHANNES H HEGEMANN

#	Article	IF	CITATIONS
19	<i>Chlamydia pneumoniae</i> GroEL1 Protein Is Cell Surface Associated and Required for Infection of HEp-2 Cells. Journal of Bacteriology, 2008, 190, 3757-3767.	2.2	48
20	The <i>Chlamydia trachomatis</i> Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cellular Microbiology, 2016, 18, 761-775.	2.1	46
21	Cpf1 protein induced bending of yeast centromere DNA element I. Nucleic Acids Research, 1993, 21, 4726-4733.	14.5	42
22	Systematic analysis ofS. cerevisiae chromosome VIII genes. Yeast, 1999, 15, 1775-1796.	1.7	42
23	The Fission Yeast Kinetochore Component Spc7 Associates with the EB1 Family Member Mal3 and Is Required for Kinetochore–Spindle Association. Molecular Biology of the Cell, 2004, 15, 5255-5267.	2.1	41
24	Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres. Molecular Genetics and Genomics, 1986, 205, 305-311.	2.4	40
25	Gene disruption. Methods in Enzymology, 2002, 350, 290-315.	1.0	39
26	Characterization of the Saccharomyces cerevisiae Fol1 Protein: Starvation for C1 Carrier Induces Pseudohyphal Growth. Molecular Biology of the Cell, 2004, 15, 3811-3828.	2.1	39
27	Infection with Chlamydia pneumoniae in infants and children with acute lower respiratory tract disease. Pediatric Infectious Disease Journal, 1995, 14, 117-122.	2.0	34
28	Identification and functional characterization of ASK/Dbf4 , a novel cell survival gene in cutaneous melanoma with prognostic relevance. Carcinogenesis, 2007, 28, 2501-2510.	2.8	30
29	Fission Yeast <i>mal2</i> ⁺ Is Required for Chromosome Segregation. Molecular and Cellular Biology, 1996, 16, 6169-6177.	2.3	29
30	Mechanisms ofChlamydophila pneumoniae–Mediated GM-CSF Release in Human Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 375-382.	2.9	29
31	Gene Disruption in the Budding Yeast <i> Saccharomyces cerevisiae</i> . , 2006, 313, 129-144.		28
32	Characterization of the Interaction between the Chlamydial Adhesin OmcB and the Human Host Cell. Journal of Bacteriology, 2013, 195, 5323-5333.	2.2	28
33	Molecular Analysis ofMETTL1,a Novel Human Methyltransferase-like Gene with a High Degree of Phylogenetic Conservation. Genomics, 1999, 57, 424-428.	2.9	26
34	Antibody Response to the 60â€kDa Heatâ€Shock Protein ofChlamydia pneumoniaein Patients with Coronary Artery Disease. Journal of Infectious Diseases, 2000, 181, 1700-1705.	4.0	26
35	All 16 centromere DNAs from Saccharomyces cerevisiae show DNA curvature. Nucleic Acids Research, 1999, 27, 1444-1449.	14.5	25
36	Functional selection for the centromere DNA from yeast chromosome VIII. Nucleic Acids Research, 1995, 23, 922-924.	14.5	24

JOHANNES H HEGEMANN

#	Article	IF	CITATIONS
37	Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Familial Cancer, 2011, 10, 273-284.	1.9	24
38	Functional analysis in yeast of the Brix protein superfamily involved in the biogenesis of ribosomes. FEMS Yeast Research, 2003, 3, 35-43.	2.3	21
39	A fast method to diagnose chromosome and plasmid loss inSaccharomyces cerevisiae strains. , 1999, 15, 1009-1019.		19
40	Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Vaccine, 2017, 35, 2543-2549.	3.8	19
41	Acquisition of Rab11 and Rab11-Fip2—A novel strategy for Chlamydia pneumoniae early survival. PLoS Pathogens, 2017, 13, e1006556.	4.7	19
42	Broad recruitment of mGBP family members to Chlamydia trachomatis inclusions. PLoS ONE, 2017, 12, e0185273.	2.5	19
43	The yeast centromere CDEI/Cpf1 complex: differences betweenin vitrobinding andin vivofunction. Nucleic Acids Research, 1994, 22, 2791-2800.	14.5	17
44	Determination of the binding constants of the centromere protein Cbf1 to all 16 centromere DNAs of Saccharomyces cerevisiae. Nucleic Acids Research, 2001, 29, 1054-1060.	14.5	17
45	The novel chlamydial adhesin CPn0473 mediates the lipid raftâ€dependent uptake of <i>Chlamydia pneumoniae</i> . Cellular Microbiology, 2016, 18, 1094-1105.	2.1	17
46	Chlamydia-induced curvature of the host-cell plasma membrane is required for infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2634-2644.	7.1	16
47	Pmp Repertoires Influence the Different Infectious Potential of Avian and Mammalian Chlamydia psittaci Strains. Frontiers in Microbiology, 2021, 12, 656209.	3.5	15
48	A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C. PLoS ONE, 2016, 11, e0157875.	2.5	15
49	Vaccination with the polymorphic membrane protein A reduces Chlamydia muridarum induced genital tract pathology. Vaccine, 2017, 35, 2801-2810.	3.8	14
50	A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells. Nature Communications, 2019, 10, 4644.	12.8	13
51	The Chlamydia pneumoniae Adhesin Pmp21 Forms Oligomers with Adhesive Properties. Journal of Biological Chemistry, 2016, 291, 22806-22818.	3.4	12
52	The Chlamydia pneumoniae Tarp Ortholog CPn0572 Stabilizes Host F-Actin by Displacement of Cofilin. Frontiers in Cellular and Infection Microbiology, 2017, 7, 511.	3.9	12
53	Chlamydial Adhesion and Adhesins. , 0, , 97-125.		12
54	OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila. Pathogens and Disease, 2015, 73, ftv035.	2.0	11

JOHANNES H HEGEMANN

#	Article	IF	CITATIONS
55	The vesicular transport protein Cgp1p/Vps54p/Tcs3p/Luv1p is required for the integrity of the actin cytoskeleton. Molecular Genetics and Genomics, 2002, 268, 190-205.	2.1	10
56	Targeted Gene Deletion in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods in Molecular Biology, 2014, 1163, 45-73.	0.9	10
57	Sequence Analysis of the 33 kb Long Region BetweenORC5 andSUI1 from the Left Arm of Chromosome XIV fromSaccharomyces cerevisiae. , 1997, 13, 849-860.		9
58	Chlamydia trachomatis Polymorphic Membrane Proteins (Pmps) Form Functional Homomeric and Heteromeric Oligomers. Frontiers in Microbiology, 2021, 12, 709724.	3.5	8
59	Genome-wide Screen of Pseudomonas aeruginosa in Saccharomyces cerevisiae Identifies New Virulence Factors. Frontiers in Cellular and Infection Microbiology, 2015, 5, 81.	3.9	7
60	CPn0572, the C. pneumoniae ortholog of TarP, reorganizes the actin cytoskeleton via a newly identified F-actin binding domain and recruitment of vinculin. PLoS ONE, 2019, 14, e0210403.	2.5	7
61	Polymorphic Membrane Protein 17G of Chlamydia psittaci Mediated the Binding and Invasion of Bacteria to Host Cells by Interacting and Activating EGFR of the Host. Frontiers in Immunology, 2021, 12, 818487.	4.8	7
62	Genome sequencing of <i>Chlamydia trachomatis</i> serovars E and F reveals substantial genetic variation. Pathogens and Disease, 2017, 75, .	2.0	6
63	Feed-borne <i>Bacillus cereus</i> exacerbates respiratory distress in chickens infected with <i>Chlamydia psittaci</i> by inducing haemorrhagic pneumonia. Avian Pathology, 2020, 49, 251-260.	2.0	6
64	An efficient method of generate phosphatase insensitive 3' labelled DNA probes using Taq polymerase. Nucleic Acids Research, 1993, 21, 4413-4413.	14.5	5
65	The chromatin of theSaccharomyces cerevisiae centromere shows cell-type specific changes. Chromosoma, 1996, 104, 489-503.	2.2	5
66	The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae. PLoS ONE, 2016, 11, e0148509.	2.5	5
67	The chromatin of the Saccharomyces cerevisiae centromere shows cell-type specific changes. Chromosoma, 1996, 104, 489-503.	2.2	5
68	The sequence of a 24 152 bp segment from the left arm of chromosome XIV from Saccharomyces cerevisiae between the BNI1 and the POL2 genes. Yeast, 1996, 12, 505-514.	1.7	4
69	HinT proteins and their putative interaction partners in Mollicutes and Chlamydiaceae. BMC Microbiology, 2005, 5, 27.	3.3	4
70	Vaginal Gel Component Hydroxyethyl Cellulose Significantly Enhances the Infectivity of Chlamydia trachomatis Serovars D and E. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	4
71	Prophylactic Multi-Subunit Vaccine against Chlamydia trachomatis: In Vivo Evaluation in Mice. Vaccines, 2021, 9, 609.	4.4	4
72	Transcriptional regulation of <i>ASK/Dbf4</i> in cutaneous melanoma is dependent on E2F1. Experimental Dermatology, 2008, 17, 986-991.	2.9	3

#	Article	IF	CITATIONS
73	Reversed-phase liquid chromatography of protected oligonucleotide diesters. Journal of Chromatography A, 1985, 348, 286-295.	3.7	2
74	Exofacial phospholipids at the plasma membrane: ill-defined targets for early infection processes. Biological Chemistry, 2019, 400, 1323-1334.	2.5	2
75	Insights Into a Chlamydia pneumoniae-Specific Gene Cluster of Membrane Binding Proteins. Frontiers in Cellular and Infection Microbiology, 2020, 10, 565808.	3.9	2
76	Chlamydia Adhesion and Invasion. , 2020, , .		1