Lars Barquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9446908/publications.pdf

Version: 2024-02-01

		147801	1	.33252
58	5,109	31		59
papers	citations	h-index		g-index
			_	
76	76	76		7505
all docs	docs citations	times ranked		citing authors
				_

#	Article	IF	CITATIONS
1	Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 2013, 41, D226-D232.	14.5	745
2	Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature, 2016, 529, 496-501.	27.8	450
3	Global <scp>RNA</scp> recognition patterns of postâ€transcriptional regulators Hfq and CsrA revealed by <scp>UV</scp> crosslinking <i>inÂvivo</i> . EMBO Journal, 2016, 35, 991-1011.	7.8	296
4	Resolving host–pathogen interactions by dual RNA-seq. PLoS Pathogens, 2017, 13, e1006033.	4.7	245
5	A decade of advances in transposon-insertion sequencing. Nature Reviews Genetics, 2020, 21, 526-540.	16.3	228
6	Patterns of genome evolution that have accompanied host adaptation in <i>Salmonella</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 863-868.	7.1	213
7	Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nature Genetics, 2016, 48, 1211-1217.	21.4	191
8	The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics, 2016, 32, 1109-1111.	4.1	167
9	High-Throughput Analysis of Gene Essentiality and Sporulation in Clostridium difficile. MBio, 2015, 6, e02383.	4.1	157
10	Parallel independent evolution of pathogenicity within the genus <i>Yersinia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6768-6773.	7.1	154
11	Functional genomics reveals that Clostridium difficileSpoOA coordinates sporulation, virulence and metabolism. BMC Genomics, 2014, 15, 160.	2.8	145
12	Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biology, 2013, 10, 1161-1169.	3.1	132
13	Global Maps of ProQ Binding InÂVivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3′ Ends. Molecular Cell, 2018, 70, 971-982.e6.	9.7	129
14	Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annual Review of Genetics, 2015, 49, 367-394.	7.6	118
15	Signatures of Adaptation in Human Invasive Salmonella Typhimurium ST313 Populations from Sub-Saharan Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003611.	3.0	116
16	RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6824-6829.	7.1	110
17	A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Research, 2013, 41, 4549-4564.	14.5	108
18	An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nature Communications, 2020, 11, 3184.	12.8	105

#	Article	IF	Citations
19	The <i>agr</i> Locus Regulates Virulence and Colonization Genes in Clostridium difficile 027. Journal of Bacteriology, 2013, 195, 3672-3681.	2.2	99
20	A High-Resolution View of Genome-Wide Pneumococcal Transformation. PLoS Pathogens, 2012, 8, e1002745.	4.7	98
21	Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science, 2021, 372, 941-948.	12.6	83
22	Dominant Role of Nucleotide Substitution in the Diversification of Serotype 3 Pneumococci over Decades and during a Single Infection. PLoS Genetics, 2013, 9, e1003868.	3.5	81
23	Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica. PLoS Genetics, 2018, 14, e1007333.	3.5	73
24	RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Research, 2011, 39, 5845-5852.	14.5	71
25	The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Research, 2017, 45, 6147-6167.	14.5	67
26	Genome and Transcriptome Adaptation Accompanying Emergence of the Definitive Type 2 Host-Restricted Salmonella enterica Serovar Typhimurium Pathovar. MBio, 2013, 4, e00565-13.	4.1	57
27	RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006. BMC Genomics, 2013, 14, 822.	2.8	50
28	Robust Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-Informed Sampling. PLoS Computational Biology, 2014, 10, e1003907.	3.2	49
29	A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nature Communications, 2020, 11 , 3557.	12.8	44
30	Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nature Communications, 2020, 11, 3363.	12.8	39
31	Transcriptional noise and exaptation as sources for bacterial sRNAs. Biochemical Society Transactions, 2019, 47, 527-539.	3.4	38
32	Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. Rna, 2020, 26, 1448-1463.	3.5	34
33	A global data-driven census of <i>Salmonella </i> small proteins and their potential functions in bacterial virulence. MicroLife, 2020, 1, .	2.1	34
34	An RNA-centric global view of <i>Clostridioides difficile</i> reveals broad activity of Hfq in a clinically important gram-positive bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
35	The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition. Nature Communications, 2020, 11, 2823.	12.8	31
36	A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes. Bioinformatics, 2016, 32, 3566-3574.	4.1	25

#	Article	IF	CITATIONS
37	RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nature Microbiology, 2021, 6, 1007-1020.	13.3	23
38	Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families. Current Protocols in Bioinformatics, 2016, 54, 12.13.1-12.13.25.	25.8	21
39	Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin. Scientific Reports, 2018, 8, 9868.	3.3	20
40	Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics. Nucleic Acids Research, 2021, 49, 4705-4724.	14.5	20
41	HandAlign: Bayesian multiple sequence alignment, phylogeny and ancestral reconstruction. Bioinformatics, 2012, 28, 1170-1171.	4.1	18
42	Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic <i>Escherichia coli</i> Nucleic Acids Research, 2022, 50, 6435-6452.	14.5	18
43	Functional analysis of <i>Salmonella</i> Typhi adaptation to survival in water. Environmental Microbiology, 2018, 20, 4079-4090.	3.8	17
44	A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Microbial Genomics, 2018, 4, .	2.0	17
45	Conditional Hfq Association with Small Noncoding RNAs in Pseudomonas aeruginosa Revealed through Comparative UV Cross-Linking Immunoprecipitation Followed by High-Throughput Sequencing. MSystems, 2019, 4, .	3.8	17
46	Characterization of the yehUT Two-Component Regulatory System of Salmonella enterica Serovar Typhi and Typhimurium. PLoS ONE, 2013, 8, e84567.	2.5	16
47	Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium. Frontiers in Cellular and Infection Microbiology, 2020, 10, 600325.	3.9	16
48	Molecular phenotyping of infection-associated small non-coding RNAs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160081.	4.0	15
49	Evolutionary Modeling and Prediction of Non-Coding RNAs in Drosophila. PLoS ONE, 2009, 4, e6478.	2.5	13
50	Cellular RNA Targets of Cold Shock Proteins CspC and CspE and Their Importance for Serum Resistance in Septicemic Escherichia coli. MSystems, 2022, 7, .	3.8	11
51	Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313. Wellcome Open Research, 2019, 4, 74.	1.8	8
52	Global identification of RsmA/N binding sites in <i>Pseudomonas aeruginosa</i> by <i>in vivo</i> UV CLIP-seq. RNA Biology, 2021, 18, 2401-2416.	3.1	6
53	The <i>iin vitro </i> and <i>iin vivo </i> effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen <i>Citrobacter rodentium </i> Peerl, 2016, 4, e2130.	2.0	6
54	Comparative genomics provides structural and functional insights into <i>Bacteroides</i> RNA biology. Molecular Microbiology, 2022, 117, 67-85.	2.5	5

#	Article	IF	CITATIONS
55	xREI: a phylo-grammar visualization webserver. Nucleic Acids Research, 2008, 36, W65-W69.	14.5	3
56	Functional analysis of colonization factor antigen I positive enterotoxigenic Escherichia coli identifies genes implicated in survival in water and host colonization. Microbial Genomics, 2021, 7, .	2.0	2
57	Role of sapA and yfgA in Susceptibility to Antibody-Mediated Complement-Dependent Killing and Virulence of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2017, 85, .	2.2	1
58	Plugging Small RNAs into the Network. MSystems, 2020, 5, .	3.8	0