Dianfan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445584/publications.pdf Version: 2024-02-01

DIANEAN L

#	Article	IF	CITATIONS
1	Isolation, characterization, and structure-based engineering of a neutralizing nanobody against SARS-CoV-2. International Journal of Biological Macromolecules, 2022, 209, 1379-1388.	7.5	3
2	Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins. Nature Communications, 2022, 13, 2617.	12.8	9
3	Structural Characterization of a Neutralizing Nanobody With Broad Activity Against SARS-CoV-2 Variants. Frontiers in Microbiology, 2022, 13, .	3.5	5
4	Selenourea for Experimental Phasing of Membrane Protein Crystals Grown in Lipid Cubic Phase. Crystals, 2022, 12, 976.	2.2	2
5	A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009328.	4.7	37
6	Cryo-EM study of patched in lipid nanodisc suggests a structural basis for its clustering in caveolae. Structure, 2021, 29, 1286-1294.e6.	3.3	7
7	A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nature Communications, 2021, 12, 4635.	12.8	72
8	Architecture of Dispatched, a Transmembrane Protein Responsible for Hedgehog Release. Frontiers in Molecular Biosciences, 2021, 8, 701826.	3.5	1
9	Uncovering a conserved vulnerability site in SARSâ€CoVâ€2 by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	6.9	17
10	The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface. Current Research in Structural Biology, 2021, 3, 312-323.	2.2	11
11	An improved fluorescent tag and its nanobodies for membrane protein expression, stability assay, and purification. Communications Biology, 2020, 3, 753.	4.4	20
12	Thermostabilization of Membrane Proteins by Consensus Mutation: A Case Study for a Fungal Δ8-7 Sterol Isomerase. Journal of Molecular Biology, 2020, 432, 5162-5183.	4.2	14
13	Structure and Functional Characterization of Membrane Integral Proteins in the Lipid Cubic Phase. Journal of Molecular Biology, 2020, 432, 5104-5123.	4.2	20
14	Structural Characterization of the N-Terminal Domain of the <i>Dictyostelium discoideum</i> Mitochondrial Calcium Uniporter. ACS Omega, 2020, 5, 6452-6460.	3.5	6
15	Developing a High-Throughput Assay for the Integral Membrane Glycerol 3-Phosphate Acyltransferase. Assay and Drug Development Technologies, 2019, 17, 267-274.	1.2	4
16	High-level heterologous expression of the human transmembrane sterol Δ8,Δ7-isomerase in Pichia pastoris. Protein Expression and Purification, 2019, 164, 105463.	1.3	9
17	Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Research, 2019, 29, 832-845.	12.0	31
18	In Meso Crystallization of the Integral Membrane Glycerol 3-Phosphate Acyltransferase with Substrates. Crystal Growth and Design, 2018, 18, 2243-2258.	3.0	4

Dianfan Li

#	Article	IF	CITATIONS
19	Membrane Phospholipid Biosynthesis in Bacteria. , 2018, , 77-119.		2
20	Lipid Cubic Phase for Membrane Protein X-ray Crystallography. , 2018, , 175-220.		1
21	The Lipid Cubic Phase as a Medium for the Growth of Membrane Protein Microcrystals. , 2018, , 87-107.		0
22	Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nature Structural and Molecular Biology, 2017, 24, 469-474.	8.2	88
23	Structure and mechanism of a group-I cobalt energy coupling factor transporter. Cell Research, 2017, 27, 675-687.	12.0	44
24	Structural insights into the committed step of bacterial phospholipid biosynthesis. Nature Communications, 2017, 8, 1691.	12.8	33
25	DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Progress in Lipid Research, 2016, 64, 138-151.	11.6	120
26	Data-collection strategy for challenging native SAD phasing. Acta Crystallographica Section D: Structural Biology, 2016, 72, 421-429.	2.3	42
27	Cholesterol homeostasis: How do cells sense sterol excess?. Chemistry and Physics of Lipids, 2016, 199, 170-178.	3.2	52
28	Ternary structure reveals mechanism of a membrane diacylglycerol kinase. Nature Communications, 2015, 6, 10140.	12.8	30
29	Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 104-122.	2.5	20
30	Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 2015, 523, 561-567.	27.8	683
31	Fast native-SAD phasing for routine macromolecular structure determination. Nature Methods, 2015, 12, 131-133.	19.0	120
32	Structural basis for polyspecificity in the <scp>POT</scp> family of proton oupled oligopeptide transporters. EMBO Reports, 2014, 15, 886-893.	4.5	118
33	Renaturing Membrane Proteins in the Lipid Cubic Phase, a Nanoporous Membrane Mimetic. Scientific Reports, 2014, 4, 5806.	3.3	22
34	â€~Hit and run' serial femtosecond crystallography of a membrane kinase in the lipid cubic phase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130621.	4.0	25
35	Cloning, expression, purification, crystallization and preliminary X-ray diffraction of a lysine-specific permease fromPseudomonas aeruginosa. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1362-1367.	0.8	4
36	A conformational landscape for alginate secretion across the outer membrane of <i>Pseudomonas aeruginosa</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2054-2068.	2.5	46

Dianfan Li

#	Article	IF	CITATIONS
37	Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 2014, 5, 3309.	12.8	505
38	Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination. Cellular and Molecular Life Sciences, 2014, 71, 4895-4910.	5.4	32
39	Crystallizing Membrane Proteins in the Lipidic Mesophase. Experience with Human Prostaglandin E2 Synthase 1 and an Evolving Strategy. Crystal Growth and Design, 2014, 14, 2034-2047.	3.0	61
40	The lipid cubic phase orin mesomethod for crystallizing proteins. Bushings for better manual dispensing. Journal of Applied Crystallography, 2014, 47, 1804-1806.	4.5	3
41	Detergent-free mass spectrometry of membrane protein complexes. Nature Methods, 2013, 10, 1206-1208.	19.0	152
42	Serial Femtosecond Crystallography of G Protein–Coupled Receptors. Science, 2013, 342, 1521-1524.	12.6	424
43	Crystal structure of the integral membrane diacylglycerol kinase. Nature, 2013, 497, 521-524.	27.8	93
44	Host Lipid and Temperature as Important Screening Variables for Crystallizing Integral Membrane Proteins in Lipidic Mesophases. Trials with Diacylglycerol Kinase. Crystal Growth and Design, 2013, 13, 2846-2857.	3.0	37
45	Use of a Robot for High-throughput Crystallization of Membrane Proteins in Lipidic Mesophases. Journal of Visualized Experiments, 2012, , e4000.	0.3	39
46	Harvesting and Cryo-cooling Crystals of Membrane Proteins Grown in Lipidic Mesophases for Structure Determination by Macromolecular Crystallography. Journal of Visualized Experiments, 2012, , e4001.	0.3	40
47	Membrane Protein Structure Determination Using Crystallography and Lipidic Mesophases: Recent Advances and Successes. Biochemistry, 2012, 51, 6266-6288.	2.5	106
48	A Straightforward and Robust Method for Introducing Human Hair as a Nucleant into High Throughput Crystallization Trials. Crystal Growth and Design, 2011, 11, 1170-1176.	3.0	15
49	Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen. Crystal Growth and Design, 2011, 11, 530-537.	3.0	48
50	Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8639-8644.	7.1	62