Christiane Branlant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445161/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Common Core RNP Structure Shared between the Small Nucleoar Box C/D RNPs and the Spliceosomal U4 snRNP. Cell, 2000, 103, 457-466.	28.9	318
2	The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Research, 1981, 9, 6935-6952.	14.5	275
3	Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Research, 1981, 9, 4303-4324.	14.5	239
4	2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association. PLoS Biology, 2010, 8, e1000276.	5.6	212
5	Identification of Modified Residues in RNAs by Reverse Transcriptionâ€Based Methods. Methods in Enzymology, 2007, 425, 21-53.	1.0	203
6	The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. Journal of Cell Biology, 2008, 180, 579-595.	5.2	196
7	Nucleotide sequences of nuclear U1A RNAs from chicken, rat and man. Nucleic Acids Research, 1980, 8, 4143-4154.	14.5	156
8	Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. FEBS Journal, 1985, 150, 61-66.	0.2	147
9	Pseudouridine Mapping in the <i>Saccharomyces cerevisiae</i> Spliceosomal U Small Nuclear RNAs (snRNAs) Reveals that Pseudouridine Synthase Pus1p Exhibits a Dual Substrate Specificity for U2 snRNA and tRNA. Molecular and Cellular Biology, 1999, 19, 2142-2154.	2.3	143
10	RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Research, 2002, 30, 921-930.	14.5	124
11	A Second Exon Splicing Silencer within Human Immunodeficiency Virus Type 1 tat Exon 2 Represses Splicing of Tat mRNA and Binds Protein hnRNP H. Journal of Biological Chemistry, 2001, 276, 40464-40475.	3.4	118
12	Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Research, 2005, 33, 3133-3144.	14.5	115
13	An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1997, 273, 552-571.	4.2	105
14	The conformation of chicken, rat and human U1A RNAs in solution. Nucleic Acids Research, 1981, 9, 841-858.	14.5	102
15	The nuclear 5S RNAs from chicken, rat and man. US RNAs are encoded by multiple genes. Nucleic Acids Research, 1981, 9, 769-787.	14.5	96
16	The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Â-synthase also acting on tRNAs. Rna, 2003, 9, 1371-1382.	3.5	96
17	A Janus Splicing Regulatory Element Modulates HIV-1 tat and rev mRNA Production by Coordination of hnRNP A1 Cooperative Binding. Journal of Molecular Biology, 2002, 323, 629-652.	4.2	87
18	In Vitro and in Cellulo Evidences for Association of the Survival of Motor Neuron Complex with the Fragile X Mental Retardation Protein. Journal of Biological Chemistry, 2008, 283, 5598-5610.	3.4	80

CHRISTIANE BRANLANT

#	Article	IF	CITATIONS
19	A conserved splicing mechanism of the LMNA gene controls premature aging. Human Molecular Genetics, 2011, 20, 4540-4555.	2.9	77
20	Alternative splicing: regulation of HIVâ€1 multiplication as a target for therapeutic action. FEBS Journal, 2010, 277, 867-876.	4.7	74
21	Small-Molecule Inhibition of HIV pre-mRNA Splicing as a Novel Antiretroviral Therapy to Overcome Drug Resistance. PLoS Pathogens, 2007, 3, e159.	4.7	73
22	Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity. Nucleic Acids Research, 2006, 34, 826-839.	14.5	72
23	The secondary structure of the protein L1 binding region of ribosomal 23S RNA. Homologies with putative secondary structures of the L11 mRNA and of a region of mitochondrial 16S rRNA. Nucleic Acids Research, 1981, 9, 293-307.	14.5	67
24	Differential Effects of the SR Proteins 9G8, SC35, ASF/SF2, and SRp40 on the Utilization of the A1 to A5 Splicing Sites of HIV-1 RNA. Journal of Biological Chemistry, 2004, 279, 29963-29973.	3.4	66
25	Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X. Nucleic Acids Research, 2018, 46, 886-896.	14.5	64
26	Posttranscriptional Modifications in the U Small Nuclear RNAs. , 0, , 201-227.		63
27	Analysis of Exonic Regions Involved in Nuclear Localization, Splicing Activity, and Dimerization of Muscleblind-like-1 Isoforms. Journal of Biological Chemistry, 2011, 286, 16435-16446.	3.4	62
28	A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. Rna, 2003, 9, 821-838.	3.5	59
29	Identification of G-quadruplexes in long functional RNAs using 7-deazaguanine RNA. Nature Chemical Biology, 2017, 13, 18-20.	8.0	59
30	Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. Journal of Cell Biology, 2014, 207, 463-480.	5.2	57
31	The 3′-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3′-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5S rRNA. Nucleic Acids Research, 1981, 9, 1533-1549.	14.5	56
32	Characteristics and Genetic Determinants of Bacteriocin Activities Produced by Carnobacterium piscicola CP5 Isolated from Cheese. Current Microbiology, 1997, 35, 319-326.	2.2	56
33	A second base pair interaction between U3 small nucleolar RNA and the 5′-ETS region is required for early cleavage of the yeast pre-ribosomal RNA. Nucleic Acids Research, 2011, 39, 9731-9745.	14.5	51
34	Biochemical and NMR Study on the Competition between Proteins SC35, SRp40, and Heterogeneous Nuclear Ribonucleoprotein A1 at the HIV-1 Tat Exon 2 Splicing Site. Journal of Biological Chemistry, 2006, 281, 37159-37174.	3.4	50
35	The small nuclear RNAs of Drosophila. Journal of Molecular Biology, 1984, 180, 927-945.	4.2	49
36	NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Research, 2015, 43, 8973-8989.	14.5	49

#	Article	IF	CITATIONS
37	Primary and secondary structures of rRNA spacer regions in enterococci. Microbiology (United) Tj ETQq1 1 0.78	34314 rgBT 1.8	/Oygrlock 10
38	Conserved Loop I of U5 Small Nuclear RNA Is Dispensable for Both Catalytic Steps of Pre-mRNA Splicing in HeLa Nuclear Extracts. Molecular and Cellular Biology, 1999, 19, 2782-2790.	2.3	47
39	RNA Sequences Associated with Proteins L1, L9, and L5, L18, L25, in Ribonucleoprotein Fragments Isolated from the 50-S Subunit of Escherichia coli Ribosomes. FEBS Journal, 1976, 70, 483-492.	0.2	46
40	ldentification and Characterization of the tRNA:Ψ31-Synthase (Pus6p) of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 34934-34940.	3.4	46
41	Pseudouridylation at Position 32 of Mitochondrial and Cytoplasmic tRNAs Requires Two Distinct Enzymes in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 52998-53006.	3.4	46
42	The identification of the RNA binding site for a 50 s ribosomal protein by a new technique. FEBS Letters, 1973, 35, 265-272.	2.8	45
43	High evolutionary conservation of the secondary structure and of certain nucleotide sequences of US RNA. Nucleic Acids Research, 1983, 11, 8359-8367.	14.5	44
44	Combined in silico and experimental identification of the Pyrococcus abyssi H/ACA sRNAs and their target sites in ribosomal RNAs. Nucleic Acids Research, 2008, 36, 2459-2475.	14.5	44
45	High-Resolution Structural Analysis Shows How Tah1 Tethers Hsp90 to the R2TP Complex. Structure, 2013, 21, 1834-1847.	3.3	42
46	A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs. Rna, 2006, 12, 1583-1593.	3.5	40
47	Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles 1 1Edited by J. Doudna. Journal of Molecular Biology, 2002, 317, 631-649.	4.2	39
48	Antagonistic factors control the unproductive splicing of SC35 terminal intron. Nucleic Acids Research, 2010, 38, 1353-1366.	14.5	39
49	ldentification of protein partners of the human immunodeficiency virus 1 <i>tat</i> / <i>rev</i> exon 3 leads to the discovery of a new HIV-1 splicing regulator, protein hnRNP K. RNA Biology, 2011, 8, 325-342.	3.1	39
50	RNA Sequences in Ribonucleoprotein Fragments of the Complex Formed from Ribosomal 23-S RNA and Ribosomal Protein L24 of Escherichia coli. FEBS Journal, 1977, 74, 155-170.	0.2	38
51	The strong efficiency of the Escherichia coli gapA P1 promoter depends on a complex combination of functional determinants. Biochemical Journal, 2004, 383, 371-382.	3.7	38
52	Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Research, 2014, 42, 10731-10747.	14.5	37
53	The Binding Site of Protein L1 on 23-S Ribosomal RNA from Escherichia coli. 3. Nucleotide Sequence. FEBS Journal, 1976, 70, 471-482.	0.2	35
54	ldentification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:Â55-synthase and RNA-guided RNA:Â-synthase activities. Nucleic Acids Research, 2007, 35, 5610-5624.	14.5	35

CHRISTIANE BRANLANT

#	Article	IF	CITATIONS
55	Implication of the SMN complex in the biogenesis and steady state level of the Signal Recognition Particle. Nucleic Acids Research, 2013, 41, 1255-1272.	14.5	35
56	An experimental study ofSaccharomyces cerevisiaeU3 snRNA conformation in solution. Nucleic Acids Research, 1992, 20, 3443-3451.	14.5	34
57	Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. Nucleic Acids Research, 2014, 42, 2015-2036.	14.5	34
58	An unusual chemical reactivity of Sm site adenosines strongly correlates with proper assembly of core U snRNP particles 1 1Edited by K. Nagai. Journal of Molecular Biology, 1999, 285, 133-147.	4.2	32
59	Accessibility of U1 RNA to base pairing with a single-stranded DNA fragment mimicking the intron extremities at the splice junction. Nucleic Acids Research, 1982, 10, 1193-1201.	14.5	31
60	Nucleotide sequences of the T1 and pancreatic ribonuclease digestion products from some large fragments of the 23S RNA of Escherichia coli. Biochimie, 1975, 57, 175-225.	2.6	30
61	The sRNA RyhB Regulates the Synthesis of the Escherichia coli Methionine Sulfoxide Reductase MsrB but Not MsrA. PLoS ONE, 2013, 8, e63647.	2.5	29
62	A partial localisation of the binding sites of the 50 S subunit proteins L1, L20 and L23 on 23 S ribosomal RNA of Escherichia coli. FEBS Letters, 1975, 52, 195-201.	2.8	28
63	The Binding Site of Protein L1 on 23-S Ribosomal RNA of Escherichia coil. 2. Identification of the RNA Region Contained in the LI Ribonucleoproteins and Determination of the Order of the RNA Subfragments within this Region. FEBS Journal, 1976, 70, 457-469.	0.2	28
64	Role of RNA structure and protein factors in the control of HIV-1 splicing. Frontiers in Bioscience - Landmark, 2009, Volume, 2714.	3.0	28
65	RNA Sequence and Two-dimensional Structure Features Required for Efficient Substrate Modification by the Saccharomyces cerevisiae RNA:Î~Synthase Pus7p. Journal of Biological Chemistry, 2009, 284, 5845-5858.	3.4	28
66	A limited number of pseudouridine residues in the human atac spliceosomal UsnRNAs as compared to human major spliceosomal UsnRNAs. Rna, 1999, 5, 1495-1503.	3.5	26
67	The D1-A2 and D2-A2 Pairs of Splice Sites from Human Immunodeficiency Virus Type 1 Are Highly Efficientin Vitro,in Spite of an Unusual Branch Site. Biochemical and Biophysical Research Communications, 1997, 237, 182-187.	2.1	23
68	Characterization of the molecular mechanisms involved in the differential production of erythrose-4-phosphate dehydrogenase, 3-phosphoglycerate kinase and class II fructose-1,6-bisphosphate aldolase inEscherichia coli. Molecular Microbiology, 2005, 57, 1265-1287.	2.5	22
69	Structure/Function Analysis of Protein–Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly. Journal of Molecular Biology, 2015, 427, 2816-2839.	4.2	22
70	The <i>Saccharomyces cerevisiae</i> Pus2 protein encoded by <i>YGL063w</i> ORF is a mitochondrial tRNA:ΰ27/28-synthase. Rna, 2007, 13, 1641-1647.	3.5	21
71	Studies on the primary structure of Escherichia coli 23 S RNA. Journal of Molecular Biology, 1977, 111, 215-256.	4.2	20
72	Studies on the primary structure of the ribosomal 23S RNA of Escherichia coli: II. A characterisation and an alignment of 24 sections spanning the entire molecule and its application to the localisation of specific fragments. Nucleic Acids Research, 1977, 4, 4323-4346.	14.5	19

#	Article	IF	CITATIONS
73	RNA-RNA interactions in the binding site of protein L24 on 23S ribosomal RNA of Escherichia coli: 1. Evidence for their occurrence between widely separated sequence regions. Nucleic Acids Research, 1978, 5, 3503-3514.	14.5	19
74	The first determination of pseudouridine residues in 23S ribosomal RNA from hyperthermophilicArchaea Sulfolobus acidocaldarius. FEBS Letters, 1999, 462, 94-100.	2.8	19
75	Deficiency of the tRNA Tyr :Î 35-synthase aPus7 in Archaea of the Sulfolobales order might be rescued by the H/ACA sRNA-guided machinery. Nucleic Acids Research, 2009, 37, 1308-1322.	14.5	19
76	Circular permutation within the coenzyme binding domain of the tetrameric glyceraldehydeâ€3â€phosphate dehydrogenase from <i>Bacillus stearothermophilus</i> . Protein Science, 1995, 4, 994-1000.	7.6	17
77	Implication of the box C/D snoRNP assembly factor Rsa1p in U3 snoRNP assembly. Nucleic Acids Research, 2017, 45, 7455-7473.	14.5	17
78	MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes. BioMed Research International, 2017, 2017, 1-12.	1.9	17
79	Characterization of ribonucleoprotein subparticles from 50 S ribosomal subunits of Escherichia coli. Journal of Molecular Biology, 1977, 116, 443-467.	4.2	15
80	Properties of Ribosomes and Ribosomal RNAs Synthesized by Escherichia coli, Grown in the Presence of Ethionine. FEBS Journal, 1981, 115, 627-634.	0.2	15
81	A structural analysis ofP.polycephalumU1 RNA at the RNA and gene levels. Are there differentially expressed U1 RNA genes inP.polycephalum? U1 RNA evolution. Nucleic Acids Research, 1989, 17, 1019-1034.	14.5	14
82	Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA. Nucleic Acids Research, 2020, 48, 3848-3868.	14.5	14
83	A Dedicated Computational Approach for the Identification of Archaeal H/ACA sRNAs. Methods in Enzymology, 2007, 425, 355-387.	1.0	13
84	Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Research, 2020, 48, 2643-2660.	14.5	13
85	Effects of pulse addition of carbon sources on continuous cultivation ofEscherichia coli containing a recombinantE. coli gapA gene. , 1999, 63, 712-720.		12
86	Purification, crystallization and preliminary X-ray diffraction data of L7Ae sRNP core protein fromPyrococcus abyssii. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 122-124.	2.5	12
87	Comparative Study of Two Box H/ACA Ribonucleoprotein Pseudouridine-Synthases: Relation between Conformational Dynamics of the Guide RNA, Enzyme Assembly and Activity. PLoS ONE, 2013, 8, e70313.	2.5	11
88	Enhanced SRSF5 Protein Expression Reinforces Lamin A mRNA Production in HeLa Cells and Fibroblasts of Progeria Patients. Human Mutation, 2016, 37, 280-291.	2.5	11
89	Fluorescence In Situ Hybridization of Small Non-Coding RNAs. Methods in Molecular Biology, 2015, 1296, 73-83.	0.9	11
90	Reconstitution of Archaeal H/ACA sRNPs and Test of their Activity. Methods in Enzymology, 2007, 425, 389-405.	1.0	10

CHRISTIANE BRANLANT

#	Article	IF	CITATIONS
91	Recognition of RNA by ribosomal protein S1: Interaction of S1 with 23 S rRNA of Escherichia coli. FEBS Letters, 1977, 80, 255-260.	2.8	9
92	The expression of the penicillin G amidase gene ofEscherichia coli by primer extension analysis. Current Microbiology, 1994, 29, 263-268.	2.2	9
93	Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity. Proteomics, 2015, 15, 2851-2861.	2.2	9
94	Characterization of the Escherichia coli 23S ribosomal RNA region associated with ribosomal protein L1. Evidence for homologies with the 5′-end region of the L11 operon. Nucleic Acids Research, 1980, 8, 5567-5577.	14.5	7
95	A multi-scale constraint programming model of alternative splicing regulation. Theoretical Computer Science, 2004, 325, 3-24.	0.9	7
96	1H, 15N and 13C resonance assignments of the two TPR domains from the human RPAP3 protein. Biomolecular NMR Assignments, 2015, 9, 99-102.	0.8	7
97	Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Î ⁻ -synthase activities of the archaeal Cbf5 protein. Scientific Reports, 2018, 8, 13815.	3.3	7
98	Studies on the primary structure of Escherichia coli 23S rRNA. Biochimie, 1979, 61, 869-876.	2.6	6
99	Structural and functional analysis of the Rous Sarcoma virus negative regulator of splicing and demonstration of its activation by the 9G8 SR protein. Nucleic Acids Research, 2011, 39, 3388-3403.	14.5	6
100	Implication of repeat insertion domains in the <i>trans</i> -activity of the long non-coding RNA ANRIL. Nucleic Acids Research, 2021, 49, 4954-4970.	14.5	6
101	Nucleotide sequence of U1 RNA from a green alga,Chlamydomonas reinhardtii. Nucleic Acids Research, 1993, 21, 2255-2255.	14.5	4
102	Probing Small Non-Coding RNAs Structures. Methods in Molecular Biology, 2015, 1296, 119-136.	0.9	4
103	The interaction between RPAP3 and TRBP reveals a possible involvement of the HSP90/R2TP chaperone complex in the regulation of miRNA activity. Nucleic Acids Research, 2022, 50, 2172-2189.	14.5	4
104	A 3′-Terminal Minihelix in the Precursor of Human Spliceosomal U2 Small Nuclear RNA. Journal of Biological Chemistry, 2002, 277, 23137-23142.	3.4	2
105	Study of RNA–Protein Interactions and RNA Structure in Ribonucleoprotein Particles. , 0, , 172-204.		2
106	RNA size is a critical factor for U-containing substrate selectivity and permanent pseudouridylated product release during the RNA:Î ⁻ synthase reaction catalyzed by box H/ACA sRNP enzyme at high temperature. Biochimie, 2015, 113, 134-142.	2.6	2
107	Translational control mechanism of HIV-1 tat1 mRNA. Retrovirology, 2011, 8, .	2.0	1
108	Quantification and Quality Control of a Small Non-Coding RNA Preparation. Methods in Molecular Biology, 2015, 1296, 17-28.	0.9	1

#	Article	IF	CITATIONS
109	Both pH and Carbon Flux Influence the Level of Rubredoxin in Clostridium butyricum. Current Microbiology, 2001, 43, 434-439.	2.2	0