
Richard B Ivry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445145/publications.pdf Version: 2024-02-01

RICHARD R IVEN

#	Article	IF	CITATIONS
1	Timing Functions of The Cerebellum. Journal of Cognitive Neuroscience, 1989, 1, 136-152.	1.1	1,174
2	Functional Mapping of Sequence Learning in Normal Humans. Journal of Cognitive Neuroscience, 1995, 7, 497-510.	1.1	735
3	The neural representation of time. Current Opinion in Neurobiology, 2004, 14, 225-232.	2.0	691
4	Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement. Cerebellum, 2012, 11, 457-487.	1.4	644
5	Explicit and Implicit Contributions to Learning in a Sensorimotor Adaptation Task. Journal of Neuroscience, 2014, 34, 3023-3032.	1.7	606
6	The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 1996, 6, 851-857.	2.0	585
7	Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 2008, 12, 273-280.	4.0	515
8	The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends in Cognitive Sciences, 2017, 21, 313-332.	4.0	465
9	Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 489-494.	3.3	454
10	The cognitive and neural architecture of sequence representation Psychological Review, 2003, 110, 316-339.	2.7	439
11	Disrupted Timing of Discontinuous But Not Continuous Movements by Cerebellar Lesions. Science, 2003, 300, 1437-1439.	6.0	427
12	The coordination of movement: optimal feedback control and beyond. Trends in Cognitive Sciences, 2010, 14, 31-39.	4.0	423
13	Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 2006, 7, 160-166.	4.9	418
14	Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience, 2019, 22, 1371-1378.	7.1	406
15	The Cerebellum and Event Timing. Annals of the New York Academy of Sciences, 2002, 978, 302-317.	1.8	404
16	Ipsilateral Motor Cortex Activity During Unimanual Hand Movements Relates to Task Complexity. Journal of Neurophysiology, 2005, 93, 1209-1222.	0.9	395
17	Consensus Paper: The Role of the Cerebellum in Perceptual Processes. Cerebellum, 2015, 14, 197-220.	1.4	355
18	Do perception and motor production share common timing mechanisms: A correlational analysis. Acta Psychologica, 1985, 60, 173-191.	0.7	336

#	Article	IF	CITATIONS
19	Cerebellar damage produces selective deficits in verbal working memory. Brain, 2006, 129, 306-320.	3.7	326
20	Does the Cerebellum Provide a Common Computation for Diverse Tasks? A Timing Hypothesis. Annals of the New York Academy of Sciences, 1990, 608, 179-211.	1.8	323
21	Motor sequence learning with the nondominant left hand. Experimental Brain Research, 2002, 146, 369-378.	0.7	311
22	Abstract and Effector-Specific Representations of Motor Sequences Identified with PET. Journal of Neuroscience, 1998, 18, 9420-9428.	1.7	309
23	Flexible Cognitive Strategies during Motor Learning. PLoS Computational Biology, 2011, 7, e1001096.	1.5	278
24	Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research, 1998, 7, 15-39.	3.3	270
25	Impaired Velocity Perception in Patients with Lesions of the Cerebellum. Journal of Cognitive Neuroscience, 1991, 3, 355-366.	1.1	227
26	The role of strategies in motor learning. Annals of the New York Academy of Sciences, 2012, 1251, 1-12.	1.8	210
27	Dissociation of Spatial and Temporal Coupling in the Bimanual Movements of Callosotomy Patients. Psychological Science, 1996, 7, 306-310.	1.8	206
28	Spatial frequency channels and perceptual grouping in texture segregation. Computer Vision, Graphics, and Image Processing, 1987, 37, 299-325.	1.1	198
29	Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nature Neuroscience, 2002, 5, 376-381.	7.1	198
30	Savings upon Re-Aiming in Visuomotor Adaptation. Journal of Neuroscience, 2015, 35, 14386-14396.	1.7	197
31	Physiological Markers of Motor Inhibition during Human Behavior. Trends in Neurosciences, 2017, 40, 219-236.	4.2	195
32	Evidence for Two Concurrent Inhibitory Mechanisms during Response Preparation. Journal of Neuroscience, 2010, 30, 3793-3802.	1.7	192
33	A formal theory of feature binding in object perception Psychological Review, 1996, 103, 165-192.	2.7	187
34	Role of Corticospinal Suppression during Motor Preparation. Cerebral Cortex, 2009, 19, 2013-2024.	1.6	185
35	Taking Aim at the Cognitive Side of Learning in Sensorimotor Adaptation Tasks. Trends in Cognitive Sciences, 2016, 20, 535-544.	4.0	185
36	Characteristics of Implicit Sensorimotor Adaptation Revealed by Task-irrelevant Clamped Feedback. Journal of Cognitive Neuroscience, 2017, 29, 1061-1074.	1.1	182

#	Article	IF	CITATIONS
37	An Explicit Strategy Prevails When the Cerebellum Fails to Compute Movement Errors. Cerebellum, 2010, 9, 580-586.	1.4	174
38	Dissociating the Role of Prefrontal and Premotor Cortices in Controlling Inhibitory Mechanisms during Motor Preparation. Journal of Neuroscience, 2012, 32, 806-816.	1.7	170
39	Universal Transform or Multiple Functionality? Understanding the Contribution of the Human Cerebellum across Task Domains. Neuron, 2019, 102, 918-928.	3.8	169
40	Cerebellar and Prefrontal Cortex Contributions to Adaptation, Strategies, and Reinforcement Learning. Progress in Brain Research, 2014, 210, 217-253.	0.9	162
41	Cerebellar involvement in eyeblink classical conditioning in humans Neuropsychology, 1996, 10, 443-458.	1.0	159
42	Age-related decline of sleep-dependent consolidation. Learning and Memory, 2007, 14, 480-484.	0.5	159
43	The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. Cerebellum, 2020, 19, 102-125.	1.4	157
44	Temporal Control and Coordination: The Multiple Timer Model. Brain and Cognition, 2002, 48, 117-132.	0.8	155
45	Encoding of Sensory Prediction Errors in the Human Cerebellum. Journal of Neuroscience, 2012, 32, 4913-4922.	1.7	147
46	Timing and Force Control Deficits in Clumsy Children. Journal of Cognitive Neuroscience, 1991, 3, 367-376.	1.1	143
47	Comparison of the Basal Ganglia and Cerebellum in Shifting Attention Journal of Cognitive Neuroscience, 2001, 13, 285-297.	1.1	143
48	Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiology of Aging, 2012, 33, 991-1000.	1.5	141
49	Nonspecific Inhibition of the Motor System during Response Preparation. Journal of Neuroscience, 2015, 35, 10675-10684.	1.7	137
50	Cerebellar Involvement in Anticipating the Consequences of Self-Produced Actions During Bimanual Movements. Journal of Neurophysiology, 2005, 93, 801-812.	0.9	132
51	Spatial and Temporal Sequence Learning in Patients with Parkinson's Disease or Cerebellar Lesions. Journal of Cognitive Neuroscience, 2003, 15, 1232-1243.	1.1	130
52	Coming Unbound: Disrupting Automatic Integration of Synesthetic Color and Graphemes by Transcranial Magnetic Stimulation of the Right Parietal Lobe. Journal of Cognitive Neuroscience, 2006, 18, 1570-1576.	1.1	126
53	Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 575-88.	0.7	122
54	Timing and Motor Control in Clumsy Children. Journal of Motor Behavior, 1992, 24, 165-172.	0.5	119

#	Article	IF	CITATIONS
55	Invariant errors reveal limitations in motor correction rather than constraints on error sensitivity. Communications Biology, 2018, 1, 19.	2.0	119
56	Comparison of patients with Parkinson's disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain and Cognition, 2005, 58, 84-93.	0.8	118
57	Sleep-Dependent Consolidation of Contextual Learning. Current Biology, 2006, 16, 1001-1005.	1.8	113
58	Generalized Role for the Cerebellum in Encoding Internal Models: Evidence from Semantic Processing. Journal of Neuroscience, 2014, 34, 2871-2878.	1.7	112
59	Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12283-12288.	3.3	111
60	Exploring the role of the cerebellum in sensory anticipation and timing: Commentary on Tesche and Karhu. Human Brain Mapping, 2000, 9, 115-118.	1.9	101
61	Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17751-17756.	3.3	101
62	Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. Cerebellum, 2019, 18, 266-286.	1.4	101
63	Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use. Journal of Neurophysiology, 2016, 115, 1499-1511.	0.9	100
64	Is the cerebellum involved in learning and cognition?. Current Opinion in Neurobiology, 1992, 2, 212-216.	2.0	98
65	Cerebellar Involvement in Response Reassignment Rather Than Attention. Journal of Neuroscience, 2002, 22, 546-553.	1.7	96
66	The influence of task outcome on implicit motor learning. ELife, 2019, 8, .	2.8	96
67	Cerebellar activation during discrete and not continuous timed movements: An fMRI study. NeuroImage, 2007, 36, 378-387.	2.1	93
68	The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks. Journal of Neurophysiology, 2017, 118, 1622-1636.	0.9	91
69	Temporal Organization of "Internal Speech―As a Basis for Cerebellar Modulation of Cognitive Functions. Behavioral and Cognitive Neuroscience Reviews, 2004, 3, 14-22.	3.9	89
70	Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration. Journal of Neuroscience, 2017, 37, 9249-9258.	1.7	88
71	Individuals with cerebellar degeneration show similar adaptation deficits with large and small visuomotor errors. Journal of Neurophysiology, 2013, 109, 1164-1173.	0.9	87
72	Simultaneous dual-task performance reveals parallel response selection after practice. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 527-45.	0.7	80

#	Article	IF	CITATIONS
73	Dissociating Task-set Selection from Task-set Inhibition in the Prefrontal Cortex. Journal of Cognitive Neuroscience, 2006, 18, 14-21.	1.1	76
74	Restricted and repetitive behaviors in autism spectrum disorders: The relationship of attention and motor deficits. Development and Psychopathology, 2013, 25, 773-784.	1.4	76
75	Independent on-line control of the two hands during bimanual reaching. European Journal of Neuroscience, 2004, 19, 1643-1652.	1.2	75
76	Support for lateralization of the Whorf effect beyond the realm of color discrimination. Brain and Language, 2008, 105, 91-98.	0.8	75
77	The Role of the Corpus Callosum in the Coupling of Bimanual Isometric Force Pulses. Journal of Neurophysiology, 2003, 90, 2409-2418.	0.9	73
78	Hemispheric Asymmetries. Current Directions in Psychological Science, 2000, 9, 59-63.	2.8	72
79	Anticipatory adjustments in the unloading task: Is an efference copy necessary for learning?. Experimental Brain Research, 2003, 148, 272-276.	0.7	72
80	Efficacy of Anodal Transcranial Direct Current Stimulation is Related to Sensitivity to Transcranial Magnetic Stimulation. Brain Stimulation, 2016, 9, 8-15.	0.7	71
81	Cerebellar contributions to motor control and language comprehension: searching for common computational principles. Annals of the New York Academy of Sciences, 2016, 1369, 154-171.	1.8	70
82	Role of the cerebellum in movements: control of timing or movement transitions?. Experimental Brain Research, 2005, 161, 383-396.	0.7	69
83	The Predictive Brain State: Timing Deficiency in Traumatic Brain Injury?. Neurorehabilitation and Neural Repair, 2008, 22, 217-227.	1.4	69
84	Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning. Journal of Neurophysiology, 2017, 117, 412-428.	0.9	69
85	Concurrent learning of temporal and spatial sequences. Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 445-57.	0.7	69
86	Neural mechanisms of timing. Trends in Cognitive Sciences, 1997, 1, 163-169.	4.0	68
87	Timing Variability in Circle Drawing and Tapping: Probing the Relationship Between Event and Emergent Timing. Journal of Motor Behavior, 2005, 37, 395-403.	0.5	68
88	Olfactory Impairments in Patients with Unilateral Cerebellar Lesions Are Selective to Inputs from the Contralesional Nostril. Journal of Neuroscience, 2005, 25, 6362-6371.	1.7	68
89	Individual differences in GABA content are reliable but are not uniform across the human cortex. NeuroImage, 2016, 139, 1-7.	2.1	68
90	Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. Journal of Neurophysiology, 2011, 106, 3157-3172.	0.9	67

#	Article	IF	CITATIONS
91	The influence of feedback valence in associative learning. NeuroImage, 2009, 44, 243-251.	2.1	66
92	Reexposure to a sensorimotor perturbation produces opposite effects on explicit and implicit learning processes. PLoS Biology, 2021, 19, e3001147.	2.6	66
93	Effects of focal basal ganglia lesions on timing and force control. Brain and Cognition, 2005, 58, 62-74.	0.8	64
94	Both sides of human cerebellum involved in preparation and execution of sequential movements. NeuroReport, 2000, 11, 3849-3853.	0.6	62
95	Credit assignment in movement-dependent reinforcement learning. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6797-6802.	3.3	62
96	Reduced phonological similarity effects in patients with damage to the cerebellum. Brain and Language, 2005, 95, 304-318.	0.8	61
97	Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks. Neuropsychologia, 2006, 44, 1737-1751.	0.7	61
98	Activating response codes by stimuli in the neglected visual field Neuropsychology, 1995, 9, 165-173.	1.0	60
99	Detecting violations of sensory expectancies following cerebellar degeneration: A mismatch negativity study. Neuropsychologia, 2008, 46, 2569-2579.	0.7	60
100	Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters. Psychological Research, 2003, 67, 56-70.	1.0	59
101	The Predictive Brain State: Asynchrony in Disorders of Attention?. Neuroscientist, 2009, 15, 232-242.	2.6	59
102	The Influence of Language on Perception: Listening to Sentences about Faces Affects the Perception of Faces. Journal of Neuroscience, 2010, 30, 15254-15261.	1.7	58
103	Taxonomies of timing: where does the cerebellum fit in?. Current Opinion in Behavioral Sciences, 2016, 8, 282-288.	2.0	57
104	Force and Timing Components of the Motor Program. Journal of Motor Behavior, 1986, 18, 449-474.	0.5	55
105	Cerebellar Involvement in Clumsiness and Other Developmental Disorders. Neural Plasticity, 2003, 10, 141-153.	1.0	55
106	The Psychology of Reaching: Action Selection, Movement Implementation, and Sensorimotor Learning. Annual Review of Psychology, 2021, 72, 61-95.	9.9	51
107	Influence of Delay Period Duration on Inhibitory Processes for Response Preparation. Cerebral Cortex, 2016, 26, 2461-2470.	1.6	50
108	Individual Differences in Resting Corticospinal Excitability Are Correlated with Reaction Time and GABA Content in Motor Cortex. Journal of Neuroscience, 2017, 37, 2686-2696.	1.7	50

#	Article	IF	CITATIONS
109	Interactions between sensory prediction error and task error during implicit motor learning. PLoS Computational Biology, 2022, 18, e1010005.	1.5	50
110	Network Dynamics Mediating Ipsilateral Motor Cortex Activity during Unimanual Actions. Journal of Cognitive Neuroscience, 2011, 23, 2468-2480.	1.1	49
111	Sequence Learning is Preserved in Individuals with Cerebellar Degeneration when the Movements are Directly Cued. Journal of Cognitive Neuroscience, 2009, 21, 1302-1310.	1.1	48
112	Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation. Neuropsychologia, 2014, 65, 287-296.	0.7	48
113	Subcortical locus of temporal coupling in the bimanual movements of a callosotomy patient. Human Movement Science, 1999, 18, 345-375.	0.6	46
114	Feedback-dependent generalization. Journal of Neurophysiology, 2013, 109, 202-215.	0.9	46
115	Rule-Based Category Learning is Impaired in Patients with Parkinson's Disease but not in Patients with Cerebellar Disorders. Journal of Cognitive Neuroscience, 2005, 17, 707-723.	1.1	43
116	Bimanual Coordination During Rhythmic Movements in the Absence of Somatosensory Feedback. Journal of Neurophysiology, 2005, 94, 2901-2910.	0.9	43
117	The Representation of Action. Current Directions in Psychological Science, 2008, 17, 130-135.	2.8	43
118	Comparison of the two cerebral hemispheres in inhibitory processes operative during movement preparation. Neurolmage, 2016, 125, 220-232.	2.1	43
119	Continuous reports of sensed hand position during sensorimotor adaptation. Journal of Neurophysiology, 2020, 124, 1122-1130.	0.9	43
120	Generic Inhibition of the Selected Movement and Constrained Inhibition of Nonselected Movements during Response Preparation. Journal of Cognitive Neuroscience, 2014, 26, 269-278.	1.1	42
121	The effect of visual uncertainty on implicit motor adaptation. Journal of Neurophysiology, 2021, 125, 12-22.	0.9	41
122	The cognitive neuropsychology of the cerebellum. International Review of Psychiatry, 2001, 13, 276-282.	1.4	40
123	Response Channel Activation and the Temporoparietal Junction. Brain and Cognition, 1998, 37, 461-476.	0.8	39
124	Functional organization of the primary motor cortex characterized by event-related fMRI during movement preparation and execution. Neuroscience Letters, 2003, 337, 69-72.	1.0	39
125	The Neural Specificity of Movement Preparation During Actual and Imagined Movements. Cerebral Cortex, 2019, 29, 689-700.	1.6	38
126	Inhibition during response preparation is sensitive to response complexity. Journal of Neurophysiology, 2015, 113, 2792-2800.	0.9	36

#	Article	IF	CITATIONS
127	Prediction, Psychosis, and the Cerebellum. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 820-831.	1.1	36
128	Multidimensional sequence learning in patients with focal basal ganglia lesions. Brain and Cognition, 2005, 58, 75-83.	0.8	35
129	Prefrontal control during a semantic decision task that involves idiom comprehension: A transcranial direct current stimulation study. Neuropsychologia, 2012, 50, 2271-2280.	0.7	35
130	Cortical and subcortical contributions to the representation of temporal information. Neuropsychologia, 2003, 41, 1461-1473.	0.7	34
131	Individual differences in proprioception predict the extent of implicit sensorimotor adaptation. Journal of Neurophysiology, 2021, 125, 1307-1321.	0.9	34
132	Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. Brain, 2004, 127, E13-E13.	3.7	33
133	Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors. Journal of Neuroscience, 2018, 38, 4521-4530.	1.7	32
134	Intermanual interactions during initiation and production of rhythmic and discrete movements in individuals lacking a corpus callosum. Experimental Brain Research, 2007, 176, 559-574.	0.7	31
135	Moving time: The influence of action on duration perception Journal of Experimental Psychology: General, 2014, 143, 1787-1793.	1.5	31
136	Context-dependent generalization. Frontiers in Human Neuroscience, 2013, 7, 171.	1.0	30
137	Abnormally increased vocal responses to pitch feedback perturbations in patients with cerebellar degeneration. Journal of the Acoustical Society of America, 2019, 145, EL372-EL378.	0.5	30
138	The persistence of spatial interference after extended training in a bimanual drawing task. Cortex, 2009, 45, 377-385.	1.1	28
139	Comparison of different baseline conditions in evaluating factors that influence motor cortex excitability. Brain Stimulation, 2011, 4, 152-155.	0.7	28
140	A Single Mechanism for Global and Selective Response Inhibition under the Influence of Motor Preparation. Journal of Neuroscience, 2020, 40, 7921-7935.	1.7	28
141	Moving to a different beat. Nature Neuroscience, 2004, 7, 1025-1026.	7.1	27
142	Moving outside the lab: The viability of conducting sensorimotor learning studies online. Neurons, Behavior, Data Analysis, and Theory, 2021, 5, .	1.8	27
143	Rule-based categorization deficits in focal basal ganglia lesion and Parkinson's disease patients. Neuropsychologia, 2010, 48, 2974-2986.	0.7	26
144	Duration Selectivity in Right Parietal Cortex Reflects the Subjective Experience of Time. Journal of Neuroscience, 2020, 40, 7749-7758.	1.7	26

#	Article	IF	CITATIONS
145	Illusions of Force Perception: The Role of Sensori-Motor Predictions, Visual Information, and Motor Errors. Journal of Neurophysiology, 2007, 97, 3305-3313.	0.9	25
146	Modulation of the FFA and PPA by language related to faces and places. Social Neuroscience, 2008, 3, 229-238.	0.7	25
147	Time on your hands: Perceived duration of sensory events is biased toward concurrent actions Journal of Experimental Psychology: General, 2017, 146, 182-193.	1.5	25
148	Competition between movement plans increases motor variability: evidence of a shared resource for movement planning. Journal of Neurophysiology, 2016, 116, 1295-1303.	0.9	23
149	Corticomotor excitability during a choice-hand reaction time task. Experimental Brain Research, 2006, 172, 230-245.	0.7	21
150	Selective inhibition of a multicomponent response can be achieved without cost. Journal of Neurophysiology, 2015, 113, 455-465.	0.9	21
151	The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations. ELife, 2021, 10, .	2.8	20
152	Left hemisphere dominance for bilateral kinematic encoding in the human brain. ELife, 2022, 11, .	2.8	20
153	Context-specific control over the neural dynamics of temporal attention by the human cerebellum. Science Advances, 2020, 6, .	4.7	19
154	Planning face, hand, and leg movements: anatomical constraints on preparatory inhibition. Journal of Neurophysiology, 2019, 121, 1609-1620.	0.9	18
155	How Can Neuroscientists Respond to the Climate Emergency?. Neuron, 2020, 106, 17-20.	3.8	18
156	Modulation of the motor system during visual and auditory language processing. Experimental Brain Research, 2011, 211, 243-250.	0.7	17
157	tDCS to premotor cortex changes action verb understanding: Complementary effects of inhibitory and excitatory stimulation. Scientific Reports, 2018, 8, 11452.	1.6	16
158	Improved temporal stability in multieffector movements Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 72-92.	0.7	15
159	Making order from chaos: the misguided frontal lobe. Nature Neuroscience, 2002, 5, 394-396.	7.1	15
160	The temporal representation of in-phase and anti-phase movements. Human Movement Science, 2007, 26, 226-234.	0.6	15
161	Multiple systems for motor skill learning. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 461-467.	1.4	15
162	Neural Signatures of Prediction Errors in a Decision-Making Task Are Modulated by Action Execution Failures. Current Biology, 2019, 29, 1606-1613.e5.	1.8	15

#	Article	IF	CITATIONS
163	A probabilistic multidimensional model of location information. Psychological Research, 1994, 56, 66-77.	1.0	14
164	Transcranial Direct Current Stimulation Does Not Influence the Speed–Accuracy Tradeoff in Perceptual Decision-making: Evidence from Three Independent Studies. Journal of Cognitive Neuroscience, 2016, 28, 1283-1294.	1.1	14
165	Continuous manipulation of mental representations is compromised in cerebellar degeneration. Brain, 2022, 145, 4246-4263.	3.7	13
166	NEUROSCIENCE: Can We Teach the Cerebellum New Tricks?. Science, 2002, 296, 1979-1980.	6.0	12
167	Two Types of TMS-Induced Movement Variability After Stimulation of the Primary Motor Cortex. Journal of Neurophysiology, 2006, 96, 1018-1029.	0.9	12
168	An event-based account of coordination stability. Psychonomic Bulletin and Review, 2006, 13, 702-710.	1.4	11
169	Parallel Response Selection after Callosotomy. Journal of Cognitive Neuroscience, 2008, 20, 526-540.	1.1	11
170	Aphasic patients exhibit a reversal of hemispheric asymmetries in categorical color discrimination. Brain and Language, 2011, 116, 151-156.	0.8	11
171	Focal striatum lesions impair cautiousness in humans. Cortex, 2016, 85, 37-45.	1.1	11
172	Beyond words: evidence for automatic language–gesture integration of symbolic gestures but not dynamic landscapes. Psychological Research, 2014, 78, 55-69.	1.0	10
173	Chapter 5 Representational issues in motor learning: Phenomena and theory. Handbook of Perception and Action, 1996, 2, 263-330.	0.1	9
174	Task goals influence online corrections and adaptation of reaching movements. Journal of Neurophysiology, 2011, 106, 2622-2631.	0.9	9
175	Dissociable use-dependent processes for volitional goal-directed reaching. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220415.	1.2	9
176	Differential Effects of Cerebellar Degeneration on Feedforward versus Feedback Control across Speech and Reaching Movements. Journal of Neuroscience, 2021, 41, 8779-8789.	1.7	8
177	A measurement theory of illusory conjunctions. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 251-69.	0.7	8
178	Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit. NeuroImage, 2016, 132, 455-468.	2.1	7
179	Cerebellar pathology does not impair performance on identification or categorization tasks. Journal of the International Neuropsychological Society, 2008, 14, 760-770.	1.2	6
180	PONT: A Protocol for Online Neuropsychological Testing. Journal of Cognitive Neuroscience, 2021, 33, 2413-2425.	1.1	6

#	Article	IF	CITATIONS
181	Comparing Continuous and Discrete Movements with fMRI. Annals of the New York Academy of Sciences, 2002, 978, 509-510.	1.8	5
182	Meaning is Not a Reflex: Context Dependence of Spatial Congruity Effects. Cognitive Science, 2015, 39, 1979-1986.	0.8	5
183	Patients with focal cerebellar lesions show reduced auditory cortex activation during silent reading. Brain and Language, 2016, 161, 18-27.	0.8	5
184	The perception of doubly curved surfaces from intersecting contours. Perception & Psychophysics, 1987, 41, 293-302.	2.3	4
185	Degree of Brain Connectivity Predicts Eye-Tracking Variability. Journal of the Korean Physical Society, 2008, 53, 3468-3473.	0.3	4
186	Intact Correction for Self-Produced Vowel Formant Variability in Individuals With Cerebellar Ataxia Regardless of Auditory Feedback Availability. Journal of Speech, Language, and Hearing Research, 2021, 64, 2234-2247.	0.7	3
187	Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals. PLoS Computational Biology, 2021, 17, e1009615.	1.5	3
188	Does the Cerebellum Preferentially Control Discrete and Not Continuous Movements?. Annals of the New York Academy of Sciences, 2002, 978, 542-544.	1.8	2
189	Goalâ€based representation in repetitive bimanual movements. International Journal of Sport and Exercise Psychology, 2004, 2, 239-254.	1.1	1
190	Prioritized verbal working memory content biases ongoing action Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 1443-1457.	0.7	1
191	Distinct Neural Signatures of Outcome Monitoring After Selection and Execution Errors. Journal of Cognitive Neuroscience, 2022, , 1-18.	1.1	1
192	Perceptual classification of information in vowel-consonant syllables. Perception & Psychophysics, 1985, 37, 93-102.	2.3	0
193	Damn the (behavioral) data, full steam ahead. Behavioral and Brain Sciences, 1989, 12, 413-414.	0.4	О
194	The neurosciences from A to Z. Nature Neuroscience, 2000, 3, 1071-1072.	7.1	0
195	Psychological Processes and Neural Mechanisms for Action: The Legacy of Steven W. Keele. Journal of Motor Behavior, 2006, 38, 3-6.	0.5	О
196	An Alternative to Associative Learning Theories. PsycCritiques, 1992, 37, 209-210.	0.0	0
197	Storms on the Horizon. PsycCritiques, 1988, 33, 312-313.	0.0	О