Jorge Ejarque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9443694/publications.pdf

Version: 2024-02-01

1163117 713466 40 575 8 21 citations h-index g-index papers 42 42 42 663 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Storage-Heterogeneity Aware Task-based Programming Models to Optimize I/O Intensive Applications. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 3589-3599.	5.6	4
2	Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. Future Generation Computer Systems, 2022, 134, 414-429.	7.5	17
3	PyCOMPSs as an Instrument for Translational Computer Science. Computing in Science and Engineering, 2022, 24, 79-84.	1.2	2
4	Accelerated execution via eager-release of dependencies in task-based workflows. International Journal of High Performance Computing Applications, 2021, 35, 325-343.	3.7	3
5	The impact of non-additive genetic associations on age-related complex diseases. Nature Communications, 2021, 12, 2436.	12.8	55
6	Towards enabling I/O awareness in task-based programming models. Future Generation Computer Systems, 2021, 121, 74-89.	7.5	1
7	A survey on the Distributed Computing stack. Computer Science Review, 2021, 42, 100422.	15.3	4
8	Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures. IEEE Transactions on Sustainable Computing, 2020, 5, 81-94.	3.1	4
9	AutoParallel: Automatic parallelisation and distributed execution of affine loop nests in Python. International Journal of High Performance Computing Applications, 2020, 34, 659-675.	3.7	3
10	A programming model for Hybrid Workflows: Combining task-based workflows and dataflows all-in-one. Future Generation Computer Systems, 2020, 113, 281-297.	7.5	9
11	Performance Meets Programmabilty: Enabling Native Python MPI Tasks In PyCOMPSs. , 2020, , .		2
12	Managing Failures in Task-Based Parallel Workflows in Distributed Computing Environments. Lecture Notes in Computer Science, 2020, , 411-425.	1.3	7
13	Enabling System Wide Shared Memory for Performance Improvement in PyCOMPSs Applications. , 2020, , .		0
14	Towards an Energy-Aware Framework for Application Development and Execution in Heterogeneous Parallel Architectures., 2019,, 129-148.		2
15	Heterogeneous Hierarchical Workflow Composition. Computing in Science and Engineering, 2019, 21, 76-86.	1.2	8
16	A hierarchic task-based programming model for distributed heterogeneous computing. International Journal of High Performance Computing Applications, 2019, 33, 987-997.	3.7	3
17	Workflow Environments for Advanced Cyberinfrastructure Platforms. , 2019, , .		3
18	Transparent Orchestration of Task-based Parallel Applications in Containers Platforms. Journal of Grid Computing, 2018, 16, 137-160.	3.9	19

#	Article	IF	Citations
19	An Architecture for Programming Distributed Applications on Fog to Cloud Systems. Lecture Notes in Computer Science, 2018, , 325-337.	1.3	3
20	Dynamic energy-aware scheduling for parallel task-based application in cloud computing. Future Generation Computer Systems, 2018, 78, 257-271.	7.5	160
21	Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs. Oil and Gas Science and Technology, 2018, 73, 47.	1.4	6
22	Transparent Execution of Task-Based Parallel Applications in Docker with COMP Superscalar., 2017,,.		2
23	PaaS-laaS Inter-Layer Adaptation in an Energy-Aware Cloud Environment. IEEE Transactions on Sustainable Computing, 2017, 2, 127-139.	3.1	19
24	Enabling Python to execute efficiently in heterogeneous distributed infrastructures with PyCOMPSs. , 2017, , .		6
25	Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation. Lecture Notes in Computer Science, 2017, , 129-143.	1.3	1
26	Energy-Aware Programming Model for Distributed Infrastructures. , 2016, , .		5
27	COMP Superscalar, an interoperable programming framework. SoftwareX, 2015, 3-4, 32-36.	2.6	48
28	Towards Automatic Application Migration to Clouds. , 2015, , .		5
29	ServiceSs: An Interoperable Programming Framework for the Cloud. Journal of Grid Computing, 2014, 12, 67-91.	3.9	87
30	ASCETIC - Adapting Service lifeCycle towards EfficienT Clouds. , 2014, , .		1
31	A Cloud-unaware Programming Model for Easy Development of Composite Services. , 2011, , .		7
32	Job Scheduling with License Reservation: A Semantic Approach. , 2011, , .		2
33	A Rule-based Approach for Infrastructure Providers' Interoperability. , 2011, , .		6
34	Exploiting semantics and virtualization for SLAâ€driven resource allocation in service providers. Concurrency Computation Practice and Experience, 2010, 22, 541-572.	2.2	7
35	A Multi-agent Approach for Semantic Resource Allocation. , 2010, , .		25
36	Introducing Virtual Execution Environments for Application Lifecycle Management and SLA-Driven Resource Distribution within Service Providers. , 2009, , .		11

#	Article	IF	CITATIONS
37	Using Semantics for Resource Allocation in Computing Service Providers. , 2008, , .		10
38	SLA-Driven Semantically-Enhanced Dynamic Resource Allocator for Virtualized Service Providers. , 2008, , .		11
39	Resource Allocation for Cloud Computing. , 0, , 90-112.		2
40	DDS: integrating data analytics transformations in task-based workflows. Open Research Europe, 0, 2, 66.	2.0	1