Vaishali Katju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9441419/publications.pdf Version: 2024-02-01

<u> Μαιςματί Κατιμ</u>

#	Article	IF	CITATIONS
1	The altered evolutionary trajectories of gene duplicates. Trends in Genetics, 2004, 20, 544-549.	6.7	267
2	<i>WOLBACHIA</i> AND THE EVOLUTION OF REPRODUCTIVE ISOLATION BETWEEN <i>DROSOPHILA RECENS</i> AND <i>DROSOPHILA SUBQUINARIA</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1157-1164.	2.3	152
3	The Structure and Early Evolution of Recently Arisen Gene Duplicates in the <i>Caenorhabditis elegans</i> Genome. Genetics, 2003, 165, 1793-1803.	2.9	139
4	Copy-number changes in evolution: rates, fitness effects and adaptive significance. Frontiers in Genetics, 2013, 4, 273.	2.3	126
5	High Spontaneous Rate of Gene Duplication in Caenorhabditis elegans. Current Biology, 2011, 21, 306-310.	3.9	116
6	Old Trade, New Tricks: Insights into the Spontaneous Mutation Process from the Partnering of Classical Mutation Accumulation Experiments with High-Throughput Genomic Approaches. Genome Biology and Evolution, 2019, 11, 136-165.	2.5	110
7	On the Formation of Novel Genes by Duplication in the Caenorhabditis elegans Genome. Molecular Biology and Evolution, 2006, 23, 1056-1067.	8.9	92
8	Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in <i>Caenorhabditis elegans</i> Spontaneous Mutation Accumulation Lines of Differing Population Size. Molecular Biology and Evolution, 2017, 34, msx051.	8.9	57
9	Mutational and transcriptional landscape of spontaneous gene duplications and deletions in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7386-7391.	7.1	57
10	Rapid Increase in frequency of gene copy-number variants during experimental evolution in Caenorhabditis elegans. BMC Genomics, 2015, 16, 1044.	2.8	40
11	Fitness decline in spontaneous mutation accumulation lines of <i>Caenorhabditis elegans</i> with varying effective population sizes. Evolution; International Journal of Organic Evolution, 2015, 69, 104-116.	2.3	37
12	In with the Old, in with the New: The Promiscuity of the Duplication Process Engenders Diverse Pathways for Novel Gene Creation. International Journal of Evolutionary Biology, 2012, 2012, 1-24.	1.0	35
13	Epimutations driven by small RNAs arise frequently but most have limited duration in Caenorhabditis elegans. Nature Ecology and Evolution, 2020, 4, 1539-1548.	7.8	33
14	Mutational Landscape of Spontaneous Base Substitutions and Small Indels in Experimental <i>Caenorhabditis elegans</i> Populations of Differing Size. Genetics, 2019, 212, 837-854.	2.9	32
15	Haploid Females in the Parasitic Wasp Nasonia vitripennis. Science, 2007, 315, 206-206.	12.6	31
16	Sex Change by Gene Conversion in a <i>Caenorhabditis elegans fog-2</i> Mutant. Genetics, 2008, 180, 669-672.	2.9	30
17	Inheritance of Gynandromorphism in the Parasitic Wasp Nasonia vitripennis. Genetics, 2007, 175, 1321-1333.	2.9	25
18	Fitness decline under osmotic stress in <i>Caenorhabditis elegans</i> populations subjected to spontaneous mutation accumulation at varying population sizes. Evolution; International Journal of Organic Evolution, 2018, 72, 1000-1008.	2.3	20

Vaishali Katju

#	Article	IF	CITATIONS
19	The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190174.	4.0	16
20	Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans. Genome Biology, 2009, 10, R75.	9.6	15
21	Gene Conversion and DNA Sequence Polymorphism in the Sex-Determination Gene fog-2 and Its Paralog ftr-1 in Caenorhabditis elegans. Molecular Biology and Evolution, 2010, 27, 1561-1569.	8.9	13
22	Genomic and Population-Level Effects of Gene Conversion in Caenorhabditis Paralogs. Genes, 2010, 1, 452-468.	2.4	11
23	Mutation rate and spectrum in obligately outcrossing <i>Caenorhabditis elegans</i> mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene <i>msh-2</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
24	Long-term experimental evolution reveals purifying selection on piRNA-mediated control of transposable element expression. BMC Biology, 2020, 18, 162.	3.8	10
25	Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiaegene duplicates. BMC Evolutionary Biology, 2011, 11, 279.	3.2	8
26	To the beat of a different drum: determinants implicated in the asymmetric sequence divergence of Caenorhabditis elegans paralogs. BMC Evolutionary Biology, 2013, 13, 73.	3.2	8
27	Early evolutionary history and genomic features of gene duplicates in the human genome. BMC Genomics, 2015, 16, 621.	2.8	6
28	Mitonuclear Mismatch is Associated With Increased Male Frequency, Outcrossing, and Male Sperm Size in Experimentally-Evolved C. elegans. Frontiers in Genetics, 2022, 13, 742272.	2.3	4