Timothy D Verstynen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9441014/publications.pdf Version: 2024-02-01

		94433	85541
82	5,923	37	71
papers	citations	h-index	g-index
117	117	117	8031
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multivariate Brain Activity while Viewing and Reappraising Affective Scenes Does Not Predict the Multiyear Progression of Preclinical Atherosclerosis in Otherwise Healthy Midlife Adults. Affective Science, 2022, 3, 406-424.	2.6	5
2	Dissociable use-dependent processes for volitional goal-directed reaching. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220415.	2.6	9
3	Identifying control ensembles for information processing within the cortico-basal ganglia-thalamic circuit. PLoS Computational Biology, 2022, 18, e1010255.	3.2	2
4	The credit assignment problem in corticoâ€basal gangliaâ€ŧhalamic networks: A review, a problem and a possible solution. European Journal of Neuroscience, 2021, 53, 2234-2253.	2.6	14
5	The influence of negative mood on solitary drinking preference: An experiment with young adult solitary drinkers. PLoS ONE, 2021, 16, e0247202.	2.5	4
6	Opposing relationships of childhood threat and deprivation with stria terminalis white matter. Human Brain Mapping, 2021, 42, 2445-2460.	3.6	15
7	Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLoS Computational Biology, 2021, 17, e1008347.	3.2	36
8	Dynamic decision policy reconfiguration under outcome uncertainty. ELife, 2021, 10, .	6.0	4
9	Corticostriatal synaptic weight evolution in a two-alternative forced choice task: a computational study. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 105048.	3.3	11
10	Adiposity covaries with signatures of asymmetric feedback learning during adaptive decisions. Social Cognitive and Affective Neuroscience, 2020, 15, 1145-1156.	3.0	2
11	Contextual framing of loss impacts harm avoidance during risky spatial decisions. Journal of Behavioral Decision Making, 2020, 33, 657-670.	1.7	0
12	Affective brain patterns as multivariate neural correlates of cardiovascular disease risk. Social Cognitive and Affective Neuroscience, 2020, 15, 1034-1045.	3.0	20
13	Investigating Gains in Neurocognition in an Intervention Trial of Exercise (IGNITE): Protocol. Contemporary Clinical Trials, 2019, 85, 105832.	1.8	26
14	Multi-scale detection of hierarchical community architecture in structural and functional brain networks. PLoS ONE, 2019, 14, e0215520.	2.5	49
15	Reward-driven changes in striatal pathway competition shape evidence evaluation in decision-making. PLoS Computational Biology, 2019, 15, e1006998.	3.2	30
16	Cognitive chimera states in human brain networks. Science Advances, 2019, 5, eaau8535.	10.3	106
17	Binding During Sequence Learning Does Not Alter Cortical Representations of Individual Actions. Journal of Neuroscience, 2019, 39, 6968-6977.	3.6	13
18	Errors in Action Timing and Inhibition Facilitate Learning by Tuning Distinct Mechanisms in the Underlying Decision Process, Journal of Neuroscience, 2019, 39, 2251-2264	3.6	11

TIMOTHY D VERSTYNEN

#	Article	IF	CITATIONS
19	Local connectome phenotypes predict social, health, and cognitive factors. Network Neuroscience, 2018, 2, 86-105.	2.6	22
20	Sensory uncertainty impacts avoidance during spatial decisions. Experimental Brain Research, 2018, 236, 529-537.	1.5	6
21	Developmental Changes in the Integration of Affective and Cognitive Corticostriatal Pathways are Associated with Reward-Driven Behavior. Cerebral Cortex, 2018, 28, 2834-2845.	2.9	20
22	Predicting and binding: interacting algorithms supporting the consolidation of sequential motor skills. Current Opinion in Behavioral Sciences, 2018, 20, 98-103.	3.9	12
23	Local White Matter Architecture Defines Functional Brain Dynamics. , 2018, , .		Ο
24	Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage, 2018, 178, 57-68.	4.2	409
25	White matter pathways as both a target and mediator of health behaviors. Annals of the New York Academy of Sciences, 2018, 1428, 71-88.	3.8	7
26	Fusing Multiple Neuroimaging Modalities to Assess Group Differences in Perception–Action Coupling. Proceedings of the IEEE, 2017, 105, 83-100.	21.3	15
27	A Brain Phenotype for Stressorâ€Evoked Blood Pressure Reactivity. Journal of the American Heart Association, 2017, 6, .	3.7	53
28	Differentiating Visual from Response Sequencing during Long-term Skill Learning. Journal of Cognitive Neuroscience, 2017, 29, 125-136.	2.3	3
29	Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning. Frontiers in Neuroscience, 2016, 10, 106.	2.8	34
30	Diffusion Capillary Phantom vs. Human Data: Outcomes for Reconstruction Methods Depend on Evaluation Medium. Frontiers in Neuroscience, 2016, 10, 407.	2.8	9
31	Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging. Frontiers in Neuroscience, 2016, 10, 418.	2.8	12
32	Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints. PLoS Computational Biology, 2016, 12, e1005203.	3.2	118
33	Organization of cortico-cortical pathways supporting memory retrieval across subregions of the left ventrolateral prefrontal cortex. Journal of Neurophysiology, 2016, 116, 920-937.	1.8	19
34	Brain dynamics of postâ€ŧask resting state are influenced by expertise: Insights from baseball players. Human Brain Mapping, 2016, 37, 4454-4471.	3.6	40
35	Adolescent brain development and depression: A case for the importance of connectivity of the anterior cingulate cortex. Neuroscience and Biobehavioral Reviews, 2016, 70, 271-287.	6.1	88
36	Connectometry: A statistical approach harnessing the analytical potential of the local connectome. NeuroImage, 2016, 125, 162-171.	4.2	175

3

TIMOTHY D VERSTYNEN

#	Article	IF	CITATIONS
37	White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults. NeuroImage, 2016, 131, 91-101.	4.2	110
38	Social network diversity and white matter microstructural integrity in humans. Social Cognitive and Affective Neuroscience, 2015, 10, 1169-1176.	3.0	48
39	Converging Structural and Functional Connectivity of Orbitofrontal, Dorsolateral Prefrontal, and Posterior Parietal Cortex in the Human Striatum. Journal of Neuroscience, 2015, 35, 3865-3878.	3.6	195
40	In vivo characterization of the connectivity and subcomponents of the human globus pallidus. NeuroImage, 2015, 120, 382-393.	4.2	11
41	Brain volume and white matter in youth with type 2 diabetes compared to obese and normal weight, nonâ€diabetic peers: A pilot study. International Journal of Developmental Neuroscience, 2015, 46, 88-91.	1.6	28
42	Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Structure and Function, 2015, 220, 1665-1680.	2.3	152
43	Competing basal ganglia pathways determine the difference between stopping and deciding not to go. ELife, 2015, 4, e08723.	6.0	72
44	Mapping Topographic Structure in White Matter Pathways with Level Set Trees. PLoS ONE, 2014, 9, e93344.	2.5	1
45	Health Neuroscience. Current Directions in Psychological Science, 2014, 23, 446-453.	5.3	50
46	The organization and dynamics of corticostriatal pathways link the medial orbitofrontal cortex to future behavioral responses. Journal of Neurophysiology, 2014, 112, 2457-2469.	1.8	25
47	Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure. NeuroImage, 2013, 79, 129-137.	4.2	73
48	Inflammatory Pathways Link Socioeconomic Inequalities to White Matter Architecture. Cerebral Cortex, 2013, 23, 2058-2071.	2.9	101
49	Rethinking the Role of the Middle Longitudinal Fascicle in Language and Auditory Pathways. Cerebral Cortex, 2013, 23, 2347-2356.	2.9	124
50	Explicating the Face Perception Network with White Matter Connectivity. PLoS ONE, 2013, 8, e61611.	2.5	124
51	Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy. PLoS ONE, 2013, 8, e80713.	2.5	812
52	Cerebral Blood Flow Links Insulin Resistance and Baroreflex Sensitivity. PLoS ONE, 2013, 8, e83288.	2.5	18
53	Microstructural organizational patterns in the human corticostriatal system. Journal of Neurophysiology, 2012, 107, 2984-2995.	1.8	81
54	Visuotopic Cortical Connectivity Underlying Attention Revealed with White-Matter Tractography. Journal of Neuroscience, 2012, 32, 2773-2782.	3.6	93

#	Article	IF	CITATIONS
55	High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage. Journal of Neurosurgery, 2012, 116, 1062-1069.	1.6	42
56	Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults. Journal of Aging Research, 2012, 2012, 1-11.	0.9	85
57	High-Definition Fiber Tractography of the Human Brain. Neurosurgery, 2012, 71, 430-453.	1.1	213
58	Increased Body Mass Index Is Associated With a Global and Distributed Decrease in White Matter Microstructural Integrity. Psychosomatic Medicine, 2012, 74, 682-690.	2.0	111
59	In vivo quantification of global connectivity in the human corpus callosum. NeuroImage, 2012, 59, 1988-1996.	4.2	80
60	Dynamic Sensorimotor Planning during Long-Term Sequence Learning: The Role of Variability, Response Chunking and Planning Errors. PLoS ONE, 2012, 7, e47336.	2.5	29
61	Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal. NeuroImage, 2011, 55, 1633-1644.	4.2	60
62	In Vivo Mapping of Microstructural Somatotopies in the Human Corticospinal Pathways. Journal of Neurophysiology, 2011, 105, 336-346.	1.8	62
63	Network Dynamics Mediating Ipsilateral Motor Cortex Activity during Unimanual Actions. Journal of Cognitive Neuroscience, 2011, 23, 2468-2480.	2.3	49
64	How Each Movement Changes the Next: An Experimental and Theoretical Study of Fast Adaptive Priors in Reaching. Journal of Neuroscience, 2011, 31, 10050-10059.	3.6	194
65	Evidence of a Novel Somatopic Map in the Human Neocerebellum During Complex Actions. Journal of Neurophysiology, 2010, 103, 3330-3336.	1.8	134
66	Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17751-17756.	7.1	101
67	Advances in functional imaging of the human cerebellum. Current Opinion in Neurology, 2010, 23, 382-387.	3.6	69
68	Voluntary and involuntary attention affect face discrimination differently. Neuropsychologia, 2008, 46, 1032-1040.	1.6	32
69	Prefrontal and parietal contributions to refreshing: An rTMS study. Neurolmage, 2008, 39, 436-440.	4.2	16
70	Attenuating illusory binding with TMS of the right parietal cortex. NeuroImage, 2007, 35, 1247-1255.	4.2	28
71	Cerebellar activation during discrete and not continuous timed movements: An fMRI study. NeuroImage, 2007, 36, 378-387.	4.2	93
72	Illusions of Force Perception: The Role of Sensori-Motor Predictions, Visual Information, and Motor Errors. Journal of Neurophysiology, 2007, 97, 3305-3313.	1.8	25

TIMOTHY D VERSTYNEN

16

#	Article	IF	CITATIONS
73	Ipsilateral corticospinal projections do not predict congenital mirror movements: A case report. Neuropsychologia, 2007, 45, 844-852.	1.6	25
74	Two Types of TMS-Induced Movement Variability After Stimulation of the Primary Motor Cortex. Journal of Neurophysiology, 2006, 96, 1018-1029.	1.8	12
75	Coming Unbound: Disrupting Automatic Integration of Synesthetic Color and Graphemes by Transcranial Magnetic Stimulation of the Right Parietal Lobe. Journal of Cognitive Neuroscience, 2006, 18, 1570-1576.	2.3	126
76	Cerebellar Involvement in Anticipating the Consequences of Self-Produced Actions During Bimanual Movements. Journal of Neurophysiology, 2005, 93, 801-812.	1.8	132
77	Ipsilateral Motor Cortex Activity During Unimanual Hand Movements Relates to Task Complexity. Journal of Neurophysiology, 2005, 93, 1209-1222.	1.8	395
78	Anticipatory adjustments in the unloading task: Is an efference copy necessary for learning?. Experimental Brain Research, 2003, 148, 272-276.	1.5	72
79	Early life environment modulates â€~handedness' in rats. Behavioural Brain Research, 2002, 131, 1-7.	2.2	110
80	Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat. NeuroReport, 2001, 12, 3019-3022.	1.2	56
81	Experiencing the future: the influence of self-initiation on temporal perception. , 0, , 164-180.		0

Big Challenges from the Little Brain $\hat{a} \in$ " Imaging the Cerebellum. , 0, , .