List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9441013/publications.pdf Version: 2024-02-01

		1994	2509
298	41,529	101	196
papers	citations	h-index	g-index
311	311	311	32715
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science, 2006, 311, 1770-1773.	12.6	3,367
2	Host Defense Mechanisms Triggered by Microbial Lipoproteins Through Toll-Like Receptors. Science, 1999, 285, 732-736.	12.6	1,506
3	Cutting Edge: Role of Toll-Like Receptor 1 in Mediating Immune Response to Microbial Lipoproteins. Journal of Immunology, 2002, 169, 10-14.	0.8	1,186
4	Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science, 1991, 254, 277-279.	12.6	1,005
5	Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science, 1991, 254, 279-282.	12.6	992
6	An Antimicrobial Activity of Cytolytic T Cells Mediated by Granulysin. Science, 1998, 282, 121-125.	12.6	906
7	IRF3 Mediates a TLR3/TLR4-Specific Antiviral Gene Program. Immunity, 2002, 17, 251-263.	14.3	781
8	CD1-restricted T cell recognition of microbial lipoglycan antigens. Science, 1995, 269, 227-230.	12.6	759
9	Cutting Edge: Vitamin D-Mediated Human Antimicrobial Activity against <i>Mycobacterium tuberculosis</i> Is Dependent on the Induction of Cathelicidin. Journal of Immunology, 2007, 179, 2060-2063.	0.8	727
10	THE CD1 SYSTEM: Antigen-Presenting Molecules for T Cell Recognition of Lipids and Glycolipids. Annual Review of Immunology, 1999, 17, 297-329.	21.8	638
11	Lymphocytes bearing antigen-specific Î ³ δT-cell receptors accumulate in human infectious disease lesions. Nature, 1989, 339, 544-548.	27.8	633
12	Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors. Science, 2001, 291, 1544-1547.	12.6	623
13	Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D–dependent mechanism. Journal of Clinical Investigation, 2007, 117, 803-811.	8.2	576
14	Activation of Toll-Like Receptor 2 in Acne Triggers Inflammatory Cytokine Responses. Journal of Immunology, 2002, 169, 1535-1541.	0.8	557
15	Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne. Journal of Investigative Dermatology, 2013, 133, 2152-2160.	0.7	557
16	IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. Journal of Clinical Investigation, 2010, 120, 1762-1773.	8.2	554
17	Differential Effects of Cytolytic T Cell Subsets on Intracellular Infection. Science, 1997, 276, 1684-1687.	12.6	481
18	Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Medicine, 2003, 9, 1039-1046.	30.7	475

#	Article	IF	CITATIONS
19	Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages. Science Translational Medicine, 2011, 3, 104ra102.	12.4	442
20	Structural Requirements for Glycolipid Antigen Recognition by CD1b-Restricted T Cells. Science, 1997, 278, 283-286.	12.6	429
21	The Cytokine Network in Lesional and Lesion-Free Psoriatic Skin Is Characterized by a T-Helper Type 1 Cell-Mediated Response. Journal of Investigative Dermatology, 1993, 101, 701-705.	0.7	419
22	STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15408-15413.	7.1	404
23	Toll-like Receptors Induce a Phagocytic Gene Program through p38. Journal of Experimental Medicine, 2004, 199, 81-90.	8.5	377
24	Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis Journal of Clinical Investigation, 1996, 97, 2130-2138.	8.2	371
25	Nonpeptide ligands for human gamma delta T cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8175-8179.	7.1	369
26	The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nature Immunology, 2012, 13, 1155-1161.	14.5	363
27	Ito Cells Are Liver-Resident Antigen-Presenting Cells for Activating T Cell Responses. Immunity, 2007, 26, 117-129.	14.3	362
28	TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nature Medicine, 2005, 11, 653-660.	30.7	361
29	Extra-renal 25-hydroxyvitamin D3-1α-hydroxylase in human health and disease. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 316-321.	2.5	359
30	Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses. Science, 2013, 339, 1448-1453.	12.6	359
31	Vitamin D-Directed Rheostatic Regulation of Monocyte Antibacterial Responses. Journal of Immunology, 2009, 182, 4289-4295.	0.8	349
32	Cytokine patterns in the pathogenesis of human leishmaniasis Journal of Clinical Investigation, 1993, 91, 1390-1395.	8.2	339
33	MyD88 Mediates Neutrophil Recruitment Initiated by IL-1R but Not TLR2 Activation in Immunity against Staphylococcus aureus. Immunity, 2006, 24, 79-91.	14.3	331
34	A Role for Triggering Receptor Expressed on Myeloid Cells-1 in Host Defense During the Early-Induced and Adaptive Phases of the Immune Response. Journal of Immunology, 2003, 170, 3812-3818.	0.8	327
35	Microbial Lipopeptides Stimulate Dendritic Cell Maturation Via Toll-Like Receptor 2. Journal of Immunology, 2001, 166, 2444-2450.	0.8	323
36	The Mannose Receptor Delivers Lipoglycan Antigens to Endosomes for Presentation to T Cells by CD1b Molecules. Immunity, 1997, 6, 187-197.	14.3	320

#	Article	IF	CITATIONS
37	Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nature Medicine, 2003, 9, 525-532.	30.7	311
38	Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Frontiers in Physiology, 2014, 5, 151.	2.8	297
39	Inflammasome-Mediated Production of IL-1β Is Required for Neutrophil Recruitment against <i>Staphylococcus aureus</i> In Vivo. Journal of Immunology, 2007, 179, 6933-6942.	0.8	294
40	Anti-TNF immunotherapy reduces CD8+ T cell–mediated antimicrobial activity against Mycobacterium tuberculosis in humans. Journal of Clinical Investigation, 2009, 119, 1167-1177.	8.2	271
41	Convergence of IL- $1\hat{1}^2$ and VDR Activation Pathways in Human TLR2/1-Induced Antimicrobial Responses. PLoS ONE, 2009, 4, e5810.	2.5	268
42	Activation of Toll-Like Receptor 2 on Human Tracheobronchial Epithelial Cells Induces the Antimicrobial Peptide Human β Defensin-2. Journal of Immunology, 2003, 171, 6820-6826.	0.8	267
43	A Prominent Role for Sp1 During Lipopolysaccharide- Mediated Induction of the IL-10 Promoter in Macrophages. Journal of Immunology, 2000, 164, 1940-1951.	0.8	248
44	Antimicrobial and Anti-Inflammatory Activity of Chitosan–Alginate Nanoparticles: A Targeted Therapy for Cutaneous Pathogens. Journal of Investigative Dermatology, 2013, 133, 1231-1239.	0.7	242
45	Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. Journal of Clinical Investigation, 2004, 113, 701-708.	8.2	231
46	Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cellular Microbiology, 2010, 12, 1648-1665.	2.1	226
47	Activation of Toll-Like Receptor 2 on Human Dendritic Cells Triggers Induction of IL-12, But Not IL-10. Journal of Immunology, 2000, 165, 3804-3810.	0.8	214
48	Macrophages Acquire Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. Journal of Immunology, 2006, 177, 1864-1871.	0.8	209
49	T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22593-22598.	7.1	206
50	Interleukin 12 at the site of disease in tuberculosis Journal of Clinical Investigation, 1994, 93, 1733-1739.	8.2	206
51	IL-15 Links TLR2/1-Induced Macrophage Differentiation to the Vitamin D-Dependent Antimicrobial Pathway. Journal of Immunology, 2008, 181, 7115-7120.	0.8	205
52	Th1-Th2 Paradigm: Insights from Leprosy. Journal of Investigative Dermatology, 1994, 102, 828-832.	0.7	204
53	Vitamin D-Binding Protein Directs Monocyte Responses to 25-Hydroxy- and 1,25-Dihydroxyvitamin D. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3368-3376.	3.6	204
54	Overexpression of CD1d by Keratinocytes in Psoriasis and CD1d-Dependent IFN-Î ³ Production by NK-T Cells. Journal of Immunology, 2000, 165, 4076-4085.	0.8	202

#	Article	IF	CITATIONS
55	Learning from lesions: patterns of tissue inflammation in leprosy Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1213-1217.	7.1	199
56	Specific Phospholipid Oxidation Products Inhibit Ligand Activation of Toll-Like Receptors 4 and 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1197-1203.	2.4	197
57	Granulysin, a T Cell Product, Kills Bacteria by Altering Membrane Permeability. Journal of Immunology, 2000, 165, 7102-7108.	0.8	195
58	The Vitamin D Connection to Pediatric Infections and Immune Function. Pediatric Research, 2009, 65, 106R-113R.	2.3	194
59	MicroRNA-21 targets the vitamin D–dependent antimicrobial pathway in leprosy. Nature Medicine, 2012, 18, 267-273.	30.7	190
60	T cell cytokine responses in persons with tuberculosis and human immunodeficiency virus infection Journal of Clinical Investigation, 1994, 94, 2435-2442.	8.2	188
61	TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nature Immunology, 2015, 16, 970-979.	14.5	182
62	Human macrophage host defense against Mycobacterium tuberculosis. Current Opinion in Immunology, 2008, 20, 371-376.	5.5	180
63	Molecular Interaction of CD1b with Lipoglycan Antigens. Immunity, 1998, 8, 331-340.	14.3	177
64	Divergence of Macrophage Phagocytic and Antimicrobial Programs in Leprosy. Cell Host and Microbe, 2009, 6, 343-353.	11.0	175
65	T-cell release of granulysin contributes to host defense in leprosy. Nature Medicine, 2001, 7, 174-179.	30.7	171
66	The Role of Toll-like Receptors in the Pathogenesis and Treatment of Dermatological Disease. Journal of Investigative Dermatology, 2005, 125, 1-8.	0.7	171
67	Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies. Immunity, 2020, 53, 878-894.e7.	14.3	169
68	ÂÂ T Lymphocytes in Human Tuberculosis. Journal of Infectious Diseases, 1992, 165, 506-512.	4.0	166
69	Local expression of antiinflammatory cytokines in cancer Journal of Clinical Investigation, 1993, 91, 1005-1010.	8.2	166
70	Human NKT Cells Express Granulysin and Exhibit Antimycobacterial Activity. Journal of Immunology, 2003, 170, 3154-3161.	0.8	163
71	Molecular Recognition of Lipid Antigens by T Cell Receptors. Journal of Experimental Medicine, 1999, 189, 195-205.	8.5	160
72	Saposin C is required for lipid presentation by human CD1b. Nature Immunology, 2004, 5, 169-174.	14.5	160

5

#	Article	IF	CITATIONS
73	Cutting Edge: All- <i>trans</i> Retinoic Acid Down-Regulates TLR2 Expression and Function. Journal of Immunology, 2005, 174, 2467-2470.	0.8	159
74	On the nature of mycobacteriophage diversity and host preference. Virology, 2012, 434, 187-201.	2.4	159
75	Antimicrobial activity of MHC class I-restricted CD8+ T cells in human tuberculosis. Proceedings of the United States of America, 2000, 97, 12210-12215.	7.1	158
76	Expression of the thymus leukemia antigen in mouse intestinal epithelium Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9727-9731.	7.1	155
77	A major T cell antigen of Mycobacterium leprae is a 10-kD heat-shock cognate protein Journal of Experimental Medicine, 1992, 175, 275-284.	8.5	154
78	Expression of Toll-Like Receptor 2 on Human Schwann Cells: a Mechanism of Nerve Damage in Leprosy. Infection and Immunity, 2003, 71, 1427-1433.	2.2	154
79	Use of Genetic Profiling in Leprosy to Discriminate Clinical Forms of the Disease. Science, 2003, 301, 1527-1530.	12.6	151
80	Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood, 2012, 120, 3699-3707.	1.4	150
81	TGF-α Regulates TLR Expression and Function on Epidermal Keratinocytes. Journal of Immunology, 2005, 174, 6137-6143.	0.8	146
82	Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. Journal of Clinical Investigation, 2008, 118, 2917-2928.	8.2	146
83	The Tyrosine-Containing Cytoplasmic Tail of CD1b Is Essential for Its Efficient Presentation of Bacterial Lipid Antigens. Immunity, 1998, 8, 341-351.	14.3	143
84	Cathelicidin Antimicrobial Peptides Block Dendritic Cell TLR4 Activation and Allergic Contact Sensitization. Journal of Immunology, 2007, 178, 1829-1834.	0.8	143
85	T cell mediated immunity to Mycobacterium tuberculosis. Current Opinion in Microbiology, 1999, 2, 89-93.	5.1	142
86	Vitamin D in Defense of the Human Immune Response. Annals of the New York Academy of Sciences, 2007, 1117, 94-105.	3.8	140
87	Binding and Antigen Presentation of Ceramide-Containing Glycolipids by Soluble Mouse and Human Cd1d Molecules. Journal of Experimental Medicine, 1999, 190, 1069-1080.	8.5	139
88	Granulysin Crystal Structure and a Structure-derived Lytic Mechanism. Journal of Molecular Biology, 2003, 325, 355-365.	4.2	138
89	Genetically restricted suppressor T-cell clones derived from lepromatous leprosy lesions. Nature, 1986, 322, 459-461.	27.8	137
90	The role of Toll-like receptors in combating mycobacteria. Seminars in Immunology, 2004, 16, 35-41.	5.6	134

#	Article	IF	CITATIONS
91	The Toll of Innate Immunity on Microbial Pathogens. New England Journal of Medicine, 1999, 340, 1834-1835.	27.0	131
92	Toll-like receptors in the skin. Seminars in Immunopathology, 2007, 29, 15-26.	6.1	131
93	T lymphocyte subsets in the skin lesions of patients with leprosy. Journal of the American Academy of Dermatology, 1983, 8, 182-189.	1.2	128
94	Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology, 2000, 101, 1-10.	4.4	128
95	Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. Journal of Clinical Investigation, 2004, 113, 701-708.	8.2	127
96	The role of Toll-like receptors in host defense against microbial infection. Current Opinion in Immunology, 2001, 13, 104-108.	5.5	124
97	NOD2 triggers an interleukin-32–dependent human dendritic cell program in leprosy. Nature Medicine, 2012, 18, 555-563.	30.7	118
98	"Dermal Dendritic Cells―Comprise Two Distinct Populations: CD1+ Dendritic Cells and CD209+ Macrophages. Journal of Investigative Dermatology, 2008, 128, 2225-2231.	0.7	114
99	TLR Activation of Langerhans Cell-Like Dendritic Cells Triggers an Antiviral Immune Response. Journal of Immunology, 2006, 177, 298-305.	0.8	112
100	Control of Mycobacterium tuberculosis through mammalian Toll-like receptors. Current Opinion in Immunology, 2002, 14, 452-457.	5.5	110
101	IL-32 is a molecular marker of a host defense network in human tuberculosis. Science Translational Medicine, 2014, 6, 250ra114.	12.4	110
102	A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell, 2017, 170, 973-985.e10.	28.9	110
103	Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis. JCI Insight, 2020, 5, .	5.0	105
104	Signaling Lymphocytic Activation Molecule Is Expressed on CD40 Ligand-Activated Dendritic Cells and Directly Augments Production of Inflammatory Cytokines. Journal of Immunology, 2001, 167, 3174-3181.	0.8	102
105	PIASx Is a Transcriptional Co-repressor of Signal Transducer and Activator of Transcription 4. Journal of Biological Chemistry, 2003, 278, 21327-21330.	3.4	101
106	Analysis of naturally occurring delayed-type hypersensitivity reactions in leprosy by in situ hybridization Journal of Experimental Medicine, 1989, 169, 1565-1581.	8.5	100
107	Therapeutic implications of the TLR and VDR partnership. Trends in Molecular Medicine, 2007, 13, 117-124.	6.7	100
108	Bee venom processes human skin lipids for presentation by CD1a. Journal of Experimental Medicine, 2015, 212, 149-163.	8.5	98

#	Article	IF	CITATIONS
109	Type 2 cytokines and negative immune regulation in human infections. Current Opinion in Immunology, 1993, 5, 511-517.	5.5	97
110	Expression of interleukin-12 in synovial tissue from patients with rheumatoid arthritis. Arthritis and Rheumatism, 1998, 41, 306-314.	6.7	97
111	The innate immune response in leprosy. Current Opinion in Immunology, 2010, 22, 48-54.	5.5	97
112	Cord Blood Vitamin D Status Impacts Innate Immune Responses. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1835-1843.	3.6	96
113	Abelson Tyrosine Kinase Controls Phagosomal Acidification Required for Killing of <i>Mycobacterium tuberculosis</i> in Human Macrophages. Journal of Immunology, 2012, 189, 4069-4078.	0.8	96
114	Granulysin: a lethal weapon of cytolytic T cells. Trends in Immunology, 1999, 20, 390-394.	7.5	93
115	Toll-Like Receptor 2 Ligands as Adjuvants for Human Th1 Responses. Journal of Immunology, 2003, 170, 194-200.	0.8	93
116	Evidence for clonal selection of gamma/delta T cells in response to a human pathogen Journal of Experimental Medicine, 1991, 174, 683-692.	8.5	92
117	T-cell recognition of non-peptide antigens. Current Opinion in Immunology, 1996, 8, 510-516.	5.5	89
118	Propionibacterium acnes Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial Skin Isolates. MBio, 2012, 3, .	4.1	89
119	TLR2 Looks at Lipoproteins. Immunity, 2009, 31, 847-849.	14.3	87
120	Cytokine Patterns at the Site of Mycobacterial Infection. Immunobiology, 1994, 191, 378-387.	1.9	84
121	Coordinate Expression of CC Chemokine Ligand 5, Granulysin, and Perforin in CD8+ T Cells Provides a Host Defense Mechanism against <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2005, 175, 7474-7483.	0.8	84
122	Evidence of enhanced type 2 immune response and impaired upregulation of a type 1 response in frail elderly nursing home residents. Mechanisms of Ageing and Development, 1997, 94, 7-16.	4.6	83
123	Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells. Blood, 2012, 119, 3128-3131.	1.4	82
124	Interferon-gamma differentially regulates interleukin-12 and interleukin-10 production in leprosy Journal of Clinical Investigation, 1997, 99, 336-341.	8.2	82
125	Human Keratinocyte Toll-like Receptors Promote Distinct Immune Responses. Journal of Investigative Dermatology, 2007, 127, 262-263.	0.7	81
126	Evidence for Human CD4+ T Cells in the CD1-Restricted Repertoire: Derivation of Mycobacteria-Reactive T Cells from Leprosy Lesions. Journal of Immunology, 2000, 164, 4790-4796.	0.8	80

#	Article	IF	CITATIONS
127	Interleukinâ€1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to <scp>T</scp> cells. Immunology, 2014, 141, 174-180.	4.4	80
128	Different Propionibacterium acnes Phylotypes Induce Distinct Immune Responses and Express Unique Surface andASecreted Proteomes. Journal of Investigative Dermatology, 2016, 136, 2221-2228.	0.7	79
129	Toll-like receptors: mammalian 'taste receptors' for a smorgasbord of microbial invaders. Current Opinion in Microbiology, 2002, 5, 70-75.	5.1	78
130	S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages. PLoS Pathogens, 2016, 12, e1005705.	4.7	77
131	CD40 ligand and interferonâ€Î³ induce an antimicrobial response against <i><scp>M</scp>ycobacterium tuberculosis</i> in human monocytes. Immunology, 2013, 139, 121-128.	4.4	71
132	Transpleural gradient of 1,25-dihydroxyvitamin D in tuberculous pleuritis Journal of Clinical Investigation, 1989, 83, 1527-1532.	8.2	69
133	Evidence for a superantigen in human tuberculosis. Immunity, 1994, 1, 35-43.	14.3	68
134	Immunological significance of Mycobacterium leprae cell walls Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1917-1921.	7.1	65
135	Potentiation of the Macrophage 25-Hydroxyvitamin D1-Hydroxylation Reaction by Human Tuberculous Pleural Effusion Fluid*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 457-460.	3.6	65
136	Granulysin-Derived Peptides Demonstrate Antimicrobial and Anti-Inflammatory Effects Against Propionibacterium acnes. Journal of Investigative Dermatology, 2005, 125, 256-263.	0.7	65
137	Integrated Pathways for Neutrophil Recruitment and Inflammation in Leprosy. Journal of Infectious Diseases, 2010, 201, 558-569.	4.0	65
138	Vitamin D-Cathelicidin Axis: at the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Network, 2020, 20, e12.	3.6	65
139	Truncated Structural Variants of Lipoarabinomannan in Mycobacterium leprae and an Ethambutol-resistant Strain of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2004, 279, 41227-41239.	3.4	64
140	Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections. Journal of Investigative Dermatology, 2011, 131, 907-915.	0.7	63
141	A Toll for DNA vaccines. Nature, 2000, 408, 659-660.	27.8	62
142	Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nature Communications, 2019, 10, 2329.	12.8	62
143	Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense. PLoS Pathogens, 2017, 13, e1006496.	4.7	61
144	The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nature Immunology, 2021, 22, 839-850.	14.5	60

#	Article	IF	CITATIONS
145	Kaposi's sarcoma in homosexual men: An immunohistochemical study. Journal of the American Academy of Dermatology, 1983, 8, 620-627.	1.2	59
146	Cytotoxic T cell responses to intracellular pathogens. Current Opinion in Immunology, 1998, 10, 471-477.	5.5	59
147	Human antimicrobial cytotoxic T lymphocytes, defined by NK receptors and antimicrobial proteins, kill intracellular bacteria. Science Immunology, 2018, 3, .	11.9	59
148	Mammalian Toll-like receptors. Annals of Allergy, Asthma and Immunology, 2002, 88, 543-548.	1.0	57
149	Substrate and Enzyme Trafficking as a Means of Regulating 1,25-Dihydroxyvitamin D Synthesis and Action: The Human Innate Immune Response. Journal of Bone and Mineral Research, 2007, 22, V20-V24.	2.8	57
150	Lipoarabinomannan-Responsive Polycytotoxic T Cells Are Associated with Protection in Human Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 345-355.	5.6	57
151	Antigen specificity of γδT lymphocytes. FASEB Journal, 1991, 5, 2699-2705.	0.5	55
152	Multiple Sclerosis: Limited Diversity of the V?2-J?3 T-Cell Receptor in Chronic Active Lesions. Annals of Neurology, 1995, 37, 198-203.	5.3	54
153	A Role for CD40-CD40 Ligand Interactions in the Generation of Type 1 Cytokine Responses in Human Leprosy. Journal of Immunology, 2000, 165, 1506-1512.	0.8	52
154	Learning from Leprosy. Advances in Immunology, 2010, 105, 1-24.	2.2	52
155	Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nature Communications, 2016, 7, 12348.	12.8	52
156	Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Science Translational Medicine, 2022, 14, eabn2263.	12.4	52
157	T-cell receptors of human suppressor cells. Nature, 1987, 329, 541-545.	27.8	51
158	Molecular Recognition of Human CD1b Antigen Complexes: Evidence for a Common Pattern of Interaction with $\hat{I}\pm\hat{I}^2$ TCRs. Journal of Immunology, 2000, 165, 4494-4504.	0.8	49
159	Expression of CD1d Molecules by Human Schwann Cells and Potential Interactions with Immunoregulatory Invariant NK T Cells. Journal of Immunology, 2006, 177, 5226-5235.	0.8	49
160	Human Dendritic Cell Expression of HLA-DO Is Subset Specific and Regulated by Maturation. Journal of Immunology, 2006, 176, 3536-3547.	0.8	49
161	TB or Not TB: That Is No Longer the Question. Science Translational Medicine, 2013, 5, 213sr6.	12.4	49
162	Role of autophagy in the host response to microbial infection and potential for therapy. Current Opinion in Immunology, 2011, 23, 65-70.	5.5	48

#	Article	IF	CITATIONS
163	Selection of T lymphocytes bearing limited T-cell receptor beta chains in the response to a human pathogen Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 188-192.	7.1	46
164	Isolation of a distinct Mycobacterium tuberculosis mannose-capped lipoarabinomannan isoform responsible for recognition by CD1b-restricted T cells. Glycobiology, 2012, 22, 1118-1127.	2.5	46
165	Vitamin D status contributes to the antimicrobial activity of macrophages against Mycobacterium leprae. PLoS Neglected Tropical Diseases, 2018, 12, e0006608.	3.0	44
166	CTL-Mediated Killing of Intracellular <i>Mycobacterium tuberculosis</i> Is Independent of Target Cell Nuclear Apoptosis. Journal of Immunology, 2000, 165, 5773-5779.	0.8	43
167	Diversity through phosphine catalysis identifies octahydro-1,6-naphthyridin-4-ones as activators of endothelium-driven immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6769-6774.	7.1	43
168	IL-12+IL-18 Cosignaling in Human Macrophages and Lung Epithelial Cells Activates Cathelicidin and Autophagy, Inhibiting Intracellular Mycobacterial Growth. Journal of Immunology, 2018, 200, 2405-2417.	0.8	42
169	IL-26 contributes to host defense against intracellular bacteria. Journal of Clinical Investigation, 2019, 129, 1926-1939.	8.2	42
170	On the mechanism of human T cell suppression. International Immunology, 1989, 1, 121-129.	4.0	41
171	LILRA2 Activation Inhibits Dendritic Cell Differentiation and Antigen Presentation to T Cells. Journal of Immunology, 2007, 179, 8128-8136.	0.8	41
172	Galectin-3 Regulates the Innate Immune Response of Human Monocytes. Journal of Infectious Diseases, 2013, 207, 947-956.	4.0	41
173	A Role for IL-12 Receptor Expression and Signal Transduction in Host Defense in Leprosy. Journal of Immunology, 2001, 167, 779-786.	0.8	40
174	Downstream Signals for MyD88-Mediated Phagocytosis of <i>Borrelia burgdorferi</i> Can Be Initiated by TRIF and Are Dependent on PI3K. Journal of Immunology, 2009, 183, 491-498.	0.8	40
175	CD1 presentation of microbial nonpeptide antigens to T cells Journal of Clinical Investigation, 1997, 99, 2071-2074.	8.2	39
176	Isolation of mycobacterium-reactive CD1-restricted T cells from patients with human immunodeficiency virus infection Journal of Clinical Investigation, 1998, 101, 383-389.	8.2	39
177	T-Lymphocyte Subsets in Lymph Nodes From Homosexual Men. JAMA - Journal of the American Medical Association, 1983, 250, 1302.	7.4	38
178	Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. Cell Reports, 2019, 26, 3574-3585.e3.	6.4	38
179	An immunopathologic evaluation of lymph nodes from monkey and man with acquired immune deficiency syndrome and related conditions. Hematological Oncology, 1985, 3, 199-210.	1.7	37
180	Imatinib Triggers Phagolysosome Acidification and Antimicrobial Activity againstMycobacterium bovisBacille Calmette–Guérin in Glucocorticoid-Treated Human Macrophages. Journal of Immunology, 2016, 197, 222-232.	0.8	37

#	Article	IF	CITATIONS
181	T-Cell Responses and Cytokines. , 0, , 417-435.		37
182	Comparison of Molecular Signatures from Multiple Skin Diseases Identifies Mechanisms of Immunopathogenesis. Journal of Investigative Dermatology, 2015, 135, 151-159.	0.7	35
183	The role of Î ³ δT lymphocytes in infection. Current Opinion in Immunology, 1991, 3, 455-459.	5.5	34
184	A role for IRF3-dependent RXRα repression in hepatotoxicity associated with viral infections. Journal of Experimental Medicine, 2006, 203, 2589-2602.	8.5	34
185	Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae. Infection and Immunity, 2016, 84, 2429-2438.	2.2	34
186	Human Monoclonal Antibodies That Distinguish Cutaneous Malignant Melanomas from Benign Nevi in Fixed Tissue Sections. Journal of Investigative Dermatology, 1986, 86, 145-148.	0.7	33
187	CD1-restricted T cells and resistance to polysaccharide-encapsulated bacteria. Trends in Immunology, 1998, 19, 257-259.	7.5	33
188	Activation of FcÎ ³ RI on Monocytes Triggers Differentiation into Immature Dendritic Cells That Induce Autoreactive T Cell Responses. Journal of Immunology, 2009, 183, 2349-2355.	0.8	33
189	T-lymphocyte subsets in lymph nodes from homosexual men. JAMA - Journal of the American Medical Association, 1983, 250, 1302-1305.	7.4	33
190	Cytotoxic T Lymphocytes in Resistance to Tuberculosis. Advances in Experimental Medicine and Biology, 1998, 452, 85-101.	1.6	33
191	Distribution of Toll-like receptor 1 and Toll-like receptor 2 in human lymphoid tissue. Immunology, 2003, 108, 10-15.	4.4	32
192	Editorial overview. Current Opinion in Immunology, 2011, 23, 1-2.	5.5	32
193	Combinatorial code governing cellular responses to complex stimuli. Nature Communications, 2015, 6, 6847.	12.8	32
194	SaVanT: a web-based tool for the sample-level visualization of molecular signatures in gene expression profiles. BMC Genomics, 2017, 18, 824.	2.8	32
195	Jagged1 Instructs Macrophage Differentiation in Leprosy. PLoS Pathogens, 2016, 12, e1005808.	4.7	32
196	A Vitamin for Autophagy. Cell Host and Microbe, 2009, 6, 201-203.	11.0	31
197	Mechanisms of Defense against Intracellular Pathogens Mediated by Human Macrophages. Microbiology Spectrum, 2016, 4, .	3.0	30
198	Extracellular traps released by antimicrobial TH17 cells contribute to host defense. Journal of Clinical Investigation, 2021, 131, .	8.2	30

#	Article	IF	CITATIONS
199	CD1 Presents Antigens from a Gram-Negative Bacterium, Haemophilus influenzae Type b. Infection and Immunity, 1998, 66, 3523-3526.	2.2	30
200	Structural Differences in Lipomannans from Pathogenic and Nonpathogenic Mycobacteria That Impact CD1b-restricted T Cell Responses*. Journal of Biological Chemistry, 2011, 286, 35438-35446.	3.4	29
201	Innate Immunity: Ignored for Decades, but Not Forgotten. Journal of Investigative Dermatology, 2012, 132, 882-886.	0.7	29
202	Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. JCI Insight, 2016, 1, e88843.	5.0	29
203	Demonstration in situ of subsets of T-lymphocytes in sarcoidosis. American Journal of Dermatopathology, 1984, 6, 423-428.	0.6	27
204	Immunopathologic Demonstration of T Lymphocyte Subpopulations and Interleukin 2 in Graneloma Annulare. Pediatric Dermatology, 1984, 2, 26-32.	0.9	26
205	Conserved Mycobacterial Lipoglycoproteins Activate TLR2 but Also Require Glycosylation for MHC Class II-Restricted T Cell Activation. Journal of Immunology, 2008, 180, 5833-5842.	0.8	26
206	Sequential conditioning-stimulation reveals distinct gene- and stimulus-specific effects of Type I and II IFN on human macrophage functions. Scientific Reports, 2019, 9, 5288.	3.3	26
207	Immunoperoxidase techniques applied to dermatopathology. Journal of Cutaneous Pathology, 1983, 10, 145-163.	1.3	25
208	Interleukin-4 Regulates the Expression of CD209 and Subsequent Uptake of <i>Mycobacterium leprae</i> by Schwann Cells in Human Leprosy. Infection and Immunity, 2010, 78, 4634-4643.	2.2	25
209	IL-27 Suppresses Antimicrobial Activity in Human Leprosy. Journal of Investigative Dermatology, 2015, 135, 2410-2417.	0.7	25
210	Nanosecond fluorescence decay studies of 2-hydroxy-1-naphthaleneacetic acid. Excited-state proton transfer. The Journal of Physical Chemistry, 1976, 80, 898-904.	2.9	24
211	Altered distribution of T-lymphocyte subpopulations in lymph nodes from patients with acquired immunodeficiency-like syndrome and hemphilia. Journal of Pediatrics, 1983, 103, 407-410.	1.8	24
212	Comparison of S-100 and OKT6 Antisera in Human Skin. Journal of Investigative Dermatology, 1984, 83, 206-209.	0.7	24
213	Shedding light on the vitamin D-tuberculosis-HIV connection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18861-18862.	7.1	24
214	Generation of a Live Attenuated Influenza Vaccine that Elicits Broad Protection in Mice and Ferrets. Cell Host and Microbe, 2017, 21, 334-343.	11.0	24
215	Signaling Lymphocytic Activation Molecule Expression and Regulation in Human Intracellular Infection Correlate with Th1 Cytokine Patterns. Journal of Immunology, 2001, 167, 5719-5724.	0.8	23
216	From plankton to pathogen recognition. Nature Medicine, 2004, 10, 1173-1174.	30.7	23

#	Article	IF	CITATIONS
217	Tissue and Blood T-Lymphocyte Subpopulations in Erythema Nodosum Leprosum. Archives of Dermatology, 1985, 121, 216.	1.4	22
218	IL-12 Expands and Differentiates Human Vγ2Vδ2 T Effector Cells Producing Antimicrobial Cytokines and Inhibiting Intracellular Mycobacterial Growth. Frontiers in Immunology, 2019, 10, 913.	4.8	22
219	The A′ and F′ Pockets of Human CD1b Are Both Required for Optimal Presentation of Lipid Antigens to T Cells. Journal of Immunology, 2001, 166, 2562-2570.	0.8	21
220	IL-1β Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells. Journal of Immunology, 2019, 203, 911-921.	0.8	21
221	Identification of a systemic interferon-Î ³ inducible antimicrobial gene signature in leprosy patients undergoing reversal reaction. PLoS Neglected Tropical Diseases, 2019, 13, e0007764.	3.0	21
222	Whole blood RNA signatures in leprosy patients identify reversal reactions before clinical onset: a prospective, multicenter study. Scientific Reports, 2019, 9, 17931.	3.3	21
223	Plasticity of antimicrobial and phagocytic programs in human macrophages. Immunology, 2019, 156, 164-173.	4.4	20
224	Tissue and blood T-lymphocyte subpopulations in erythema nodosum leprosum. Archives of Dermatology, 1985, 121, 216-219.	1.4	20
225	IL-32Î ³ potentiates tumor immunity in melanoma. JCI Insight, 2020, 5, .	5.0	20
226	Leprosy: New insight into an ancient disease. Journal of the American Academy of Dermatology, 1987, 17, 1-13.	1.2	19
227	Immune mechanisms in bacterial and parasitic diseases: protective immunity versus pathology. Current Opinion in Immunology, 1991, 3, 480-485.	5.5	19
228	Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Science Translational Medicine, 2022, 14, eabh1478.	12.4	19
229	IL12 and the human immune response to mycohacteria. Research in Immunology, 1995, 146, 526-531.	0.9	18
230	Activation of human CD4 ⁺ T cells by targeting MHC class II epitopes to endosomal compartments using human CD1 tail sequences. Immunology, 2007, 122, 522-531.	4.4	18
231	<i>Mycobacterium tuberculosis</i> Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. Journal of Immunology, 2018, 200, 3244-3258.	0.8	18
232	In situ detection of amastigotes in American cutaneous leishmaniasis, using monoclonal antibodies. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1986, 80, 6-9.	1.8	17
233	Lepromin-induced suppressor cells in lepromatous leprosy. Cellular Immunology, 1987, 104, 99-104.	3.0	17
234	Immunodeficiency and other clinical immunology. Journal of Allergy and Clinical Immunology, 1998, 101, 545-551.	2.9	17

#	Article	IF	CITATIONS
235	IMMUNOLOGY: Now Presenting: ÂÂ T Cells. Science, 2005, 309, 252-253.	12.6	17
236	Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight, 2019, 4, .	5.0	17
237	Immunopathology of leprosy granulomas. Seminars in Immunopathology, 1988, 10, 359-374.	4.0	16
238	Immune Regulation: Learning from Leprosy. Hospital Practice (1995), 1993, 28, 71-84.	1.0	16
239	The Human CD1-Restricted T Cell Repertoire Is Limited to Cross-Reactive Antigens: Implications for Host Responses against Immunologically Related Pathogens. Journal of Immunology, 2005, 174, 2637-2644.	0.8	16
240	Selective Accumulation of T Cells According to T-Cell Receptor Vβ Gene Usage in Skin Cancer. Journal of Investigative Dermatology, 1994, 103, 751-757.	0.7	15
241	T cell and cytokine patterns in leprosy skin lesions. Seminars in Immunopathology, 1992, 13, 413-26.	4.0	14
242	Selective Expansion of Vδ1 + T Cells from Leprosy Skin Lesions. Journal of Investigative Dermatology, 1992, 99, 848-852.	0.7	14
243	Regulation of Cytokine Patterns in Leprosy. Annals of the New York Academy of Sciences, 1994, 730, 42-52.	3.8	14
244	A role for interleukinâ€5 in promoting increased immunoglobulin M at the site of disease in leprosy. Immunology, 2010, 131, 405-414.	4.4	14
245	Vitamin A Metabolism by Dendritic Cells Triggers an Antimicrobial Response against Mycobacterium tuberculosis. MSphere, 2019, 4, .	2.9	14
246	Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages. BMC Microbiology, 2018, 18, 19.	3.3	13
247	Noninvasive Tape-Stripping with High-Resolution RNA Profiling Effectively Captures a Preinflammatory State in Nonlesional Psoriatic Skin. Journal of Investigative Dermatology, 2022, 142, 1587-1596.e2.	0.7	13
248	Demonstration of a subpopulation of Ia+ T-helper cells in mycosis fungoides and the Sézary syndrome. American Journal of Dermatopathology, 1983, 5, 135-144.	0.6	12
249	Learning from Leprosy: Insights into Contemporary Immunology from an Ancient Disease. Skin Pharmacology and Physiology, 2002, 15, 1-6.	2.5	12
250	Carbohydrate-Dependent Binding of Langerin to SodC, a Cell Wall Glycoprotein of Mycobacterium leprae. Journal of Bacteriology, 2015, 197, 615-625.	2.2	12
251	Intrinsic activation of the vitamin D antimicrobial pathway by M. leprae infection is inhibited by type I IFN. PLoS Neglected Tropical Diseases, 2018, 12, e0006815.	3.0	12
252	Recognition of mycobacterial antigens by $\hat{I}^{\hat{J}}$ T cells. Research in Immunology, 1990, 141, 645-651.	0.9	11

#	Article	IF	CITATIONS
253	Activation of toll-like receptors by microbial lipoproteins: Role in host defenseâ~†. Journal of Allergy and Clinical Immunology, 2001, 108, S104-S106.	2.9	11
254	Angiogenesis in Cutaneous Lesions of Leprosy. Archives of Dermatology, 2007, 143, 1527-9.	1.4	11
255	IRAK2 Has a Critical Role in Promoting Feed-Forward Amplification of Epidermal Inflammatory Responses. Journal of Investigative Dermatology, 2021, 141, 2436-2448.	0.7	11
256	CD1: clues on a new antigen-presenting pathway. Research in Immunology, 1996, 147, 321-328.	0.9	10
257	Breaking Tolerance—Another Piece Added to the Vitiligo Puzzle. Journal of Investigative Dermatology, 2005, 124, xiii-xv.	0.7	9
258	Regulation of human T-cell homing receptor expression in cutaneous bacterial infection. Immunology, 2007, 120, 518-525.	4.4	9
259	A Review of the Journal of Investigative Dermatology's Most Cited Publications over the Past 25 Years and the Use of Developing Bibliometric Methodologies to Assess Journal Quality. Journal of Investigative Dermatology, 2012, 132, 1050-1060.	0.7	9
260	Cellular, Molecular, and Immunological Characteristics of Langhans Multinucleated Giant Cells Programmed by IL-15. Journal of Investigative Dermatology, 2020, 140, 1824-1836.e7.	0.7	8
261	A CD4+CD161+ T-Cell Subset Present in Unexposed Humans, Not Tb Patients, Are Fast Acting Cells That Inhibit the Growth of Intracellular Mycobacteria Involving CD161 Pathway, Perforin, and IFN-γ/Autophagy. Frontiers in Immunology, 2021, 12, 599641.	4.8	8
262	Stigma Variations: Observations On Suppressor T Cells And Leprosy. Annual Review of Immunology, 1992, 10, 453-488.	21.8	8
263	Kaposi's Sarcoma. International Journal of Dermatology, 1983, 22, 443-448.	1.0	7
264	IMMUNOLOGY: Chip ShotsWill Functional Genomics Get Functional?. Science, 2001, 294, 799-801.	12.6	7
265	The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy. PLoS Neglected Tropical Diseases, 2019, 13, e0007589.	3.0	7
266	Evidence for a superantigen in the pathogenesis of tuberculosis. Seminars in Immunopathology, 1996, 17, 375-384.	4.0	6
267	ER Stress Regulates Immunosuppressive Function of Myeloid Derived Suppressor Cells in Leprosy that Can Be Overcome in the Presence of IFN-γ. IScience, 2020, 23, 101050.	4.1	6
268	γδT cell receptor positive T cells in the inflammatory joint: Lack of association with response to soluble antigens. Cellular Immunology, 1991, 137, 127-138.	3.0	5
269	Role of Toll-Like Receptors in Response to Bacterial Infection. , 2002, 10, 149-163.		5
270	The CD1b structure: antigen presentation adapts to a high-fat diet. Nature Immunology, 2002, 3, 703-704.	14.5	5

#	Article	IF	CITATIONS
271	T Lymphocytes Bearing Gamma-Delta Antigen Receptors in Skin. Chemical Immunology and Allergy, 1992, 53, 61-74.	1.7	4
272	Functional characterization of a T-cell receptor BV6+T-cell clone derived from a leprosy lesion. Immunology, 2007, 120, 354-361.	4.4	4
273	DNA transportation authority. Nature Medicine, 2008, 14, 1319-1320.	30.7	3
274	A phylogenomic study quantifies competing mechanisms for pseudogenization in prokaryotes—The Mycobacterium leprae case. PLoS ONE, 2018, 13, e0204322.	2.5	3
275	Immunity to infection. Current Opinion in Immunology, 2000, 12, 387-389.	5.5	2
276	Mechanisms of Immunological Unresponsiveness in the Spectra of Leprosy and Leishmaniasis. Advances in Experimental Medicine and Biology, 1988, 239, 263-278.	1.6	2
277	Chips, Infections, and National Security. Science, 2001, 294, 1279b-1279.	12.6	2
278	CYTOKINE RESPONSES IN LEPROSY LESIONS. Nihon Rai Gakkai Zasshi, 1995, 64, 85-88.	0.0	2
279	Kaposi's Sarcoma and Autoimmune Thrombocytopenia. Cancer Investigation, 1984, 2, 97-101.	1.3	1
280	Type 1 and Type 2 Cytokine Expression in Human American Mucocutaneous Leishmaniasis. , 1996, , 91-97.		1
281	Drosophila, the savvy exterminator. Nature Immunology, 2000, 1, 361-361.	14.5	1
282	Host–pathogen interactions. Current Opinion in Immunology, 2003, 15, 393-395.	5.5	1
283	Bacterial and Mycobacterial Infections. , 2010, , 129-148.		1
284	Vitamin D and Human Innate Immunity. Oxidative Stress and Disease, 2012, , 223-238.	0.3	1
285	Mechanisms of Defense against Intracellular Pathogens Mediated by Human Macrophages. , 0, , 727-738.		1
286	CD1 and nonpeptide antigen recognition systems in microbial immunity. , 2003, , 21-38.		0
287	T cell responses in microbial infection. Current Opinion in Immunology, 2009, 21, 365-366.	5.5	0
288	Response to Comment on "lL-1β Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells― Journal of Immunology, 2019, 203, 3093-3093.	0.8	0

#	Article	IF	CITATIONS
289	Identification of Genes Encoding Antimicrobial Proteins in Langerhans Cells. Frontiers in Immunology, 2021, 12, 695373.	4.8	0
290	Endosomal Targeting Sequences from Non-Classical Antigen Presenting Molecules Can Direct Antigens into the MIIC and Other Antigen Processing Compartments Blood, 2004, 104, 1357-1357.	1.4	0
291	ILâ€1β is required for TLRâ€mediated antimicrobial activity. FASEB Journal, 2008, 22, 672.27.	0.5	0
292	Langerhans cells of human skin are the natural antigenâ€presenting cells for CD1c antigen presentation. FASEB Journal, 2008, 22, 1068.10.	0.5	0
293	ILâ€∃beta triggers monocytes to differentiate into CD209+ macrophages. FASEB Journal, 2008, 22, 539-539.	0.5	0
294	Conserved mycobacterial lipoglycoproteins activate TLR2 but also require glycosylation for antigen presentation to T cells. FASEB Journal, 2008, 22, 421-421.	0.5	0
295	FcÎ ³ receptor activation triggers monocytes to differentiate into immature dendritic cells that promote autologous T cell response. FASEB Journal, 2008, 22, 468-468.	0.5	0
296	Pathology and Pathogenesis of Bacterial Infections. , 0, , 281-292.		0
297	Molecular Approaches to Developing a Vaccine for Leprosy. Progress in Vaccinology, 1989, , 335-346.	0.7	0
298	Still Learning from Leprosy. , 1993, , 761-766.		0