Juan Luis Mendoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/944077/publications.pdf Version: 2024-02-01

HIAN LIUS MENDOZA

#	Article	IF	CITATIONS
1	Distinct molecular phenotypes involving several human diseases are induced by IFN-λ3 and IFN-λ4 in monocyte-derived macrophages. Genes and Immunity, 2022, 23, 73-84.	4.1	2
2	Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nature Biomedical Engineering, 2022, 6, 819-829.	22.5	32
3	Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nature Genetics, 2020, 52, 1283-1293.	21.4	217
4	Interrogating the recognition landscape of a conserved HIV-specific TCR reveals distinct bacterial peptide cross-reactivity. ELife, 2020, 9, .	6.0	6
5	Structure of the IFNÎ ³ receptor complex guides design of biased agonists. Nature, 2019, 567, 56-60.	27.8	85
6	Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell, 2018, 172, 549-563.e16.	28.9	226
7	HLA-B57 micropolymorphism defines the sequence and conformational breadth of the immunopeptidome. Nature Communications, 2018, 9, 4693.	12.8	31
8	Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathogens, 2018, 14, e1007420.	4.7	100
9	A polymorphic residue that attenuates the antiviral potential of interferon lambda 4 in hominid lineages. PLoS Pathogens, 2018, 14, e1007307.	4.7	25
10	T cell receptor cross-reactivity expanded by dramatic peptide–MHC adaptability. Nature Chemical Biology, 2018, 14, 934-942.	8.0	77
11	Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7369-E7378.	7.1	21
12	The Intergenic Recombinant HLA-Bâ^—46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Reports, 2017, 19, 1394-1405.	6.4	40
13	The IFN-λ-IFN-λR1-IL-10Rβ Complex Reveals Structural Features Underlying Type III IFN Functional Plasticity. Immunity, 2017, 46, 379-392.	14.3	89
14	Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers. ELife, 2017, 6, .	6.0	51
15	Alpha and Beta Type 1 Interferon Signaling: Passage for Diverse Biologic Outcomes. Cell, 2016, 164, 349-352.	28.9	120
16	Insights into Cytokine–Receptor Interactions from Cytokine Engineering. Annual Review of Immunology, 2015, 33, 139-167.	21.8	204
17	Multifarious Determinants of Cytokine Receptor Signaling Specificity. Advances in Immunology, 2014, 121, 1-39.	2.2	62
18	Deconstructing the Peptide-MHC Specificity of T Cell Recognition. Cell, 2014, 157, 1073-1087.	28.9	483

Juan Luis Mendoza

#	Article	IF	CITATIONS
19	Requirements for Efficient Correction of ΔF508 CFTR Revealed by Analyses of Evolved Sequences. Cell, 2012, 148, 164-174.	28.9	243
20	Biochemical and Biophysical Approaches to Probe CFTR Structure. Methods in Molecular Biology, 2011, 741, 365-376.	0.9	5
21	Introduction to Section IV: Biophysical Methods to Approach CFTR Structure. Methods in Molecular Biology, 2011, 741, 321-327.	0.9	2
22	The Cystic Fibrosis-causing Mutation ΔF508 Affects Multiple Steps in Cystic Fibrosis Transmembrane Conductance Regulator Biogenesis. Journal of Biological Chemistry, 2010, 285, 35825-35835.	3.4	160
23	A Unique Redox-sensing Sensor II Motif in TorsinA Plays a Critical Role in Nucleotide and Partner Binding*. Journal of Biological Chemistry, 2010, 285, 37271-37280.	3.4	52
24	Optical Detection of Disordered Water within a Protein Cavity. Journal of the American Chemical Society, 2009, 131, 12265-12272.	13.7	18
25	The pH Dependence of Heme Pocket Hydration and Ligand Rebinding Kinetics in Photodissociated Carbonmonoxymyoglobin. Journal of Biological Chemistry, 2008, 283, 14165-14175.	3.4	22
26	Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. Journal of Bioenergetics and Biomembranes, 2007, 39, 499-505.	2.3	52
27	Water and ligand entry in myoglobin: Assessing the speed and extent of heme pocket hydration after CO photodissociation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1254-1259.	7.1	55