Lynne Regan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9440620/publications.pdf Version: 2024-02-01

LVNNE RECAN

#	Article	IF	CITATIONS
1	TPR proteins: the versatile helix. Trends in Biochemical Sciences, 2003, 28, 655-662.	7.5	994
2	A Thermodynamic Scale for the .betaSheet Forming Tendencies of the Amino Acids. Biochemistry, 1994, 33, 5510-5517.	2.5	412
3	Protein–protein interactions: General trends in the relationship between binding affinity and interfacial buried surface area. Protein Science, 2013, 22, 510-515.	7.6	231
4	What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Science, 1996, 5, 1584-1593.	7.6	189
5	Protein alchemy: Changing β-sheet into α-helix. Nature Structural Biology, 1997, 4, 548-552.	9.7	164
6	Stimuli-Responsive Smart Gels Realized via Modular Protein Design. Journal of the American Chemical Society, 2010, 132, 14024-14026.	13.7	105
7	The role of backbone conformational heat capacity in protein stability: Temperature dependent dynamics of the B1 domain of <i>Streptococcal</i> protein G. Protein Science, 2000, 9, 1177-1193.	7.6	88
8	A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals. Nature Communications, 2016, 7, 11101.	12.8	78
9	The past, present and future of protein-based materials. Open Biology, 2018, 8, .	3.6	73
10	The de novo design of a rubredoxinâ€like fe site. Protein Science, 1998, 7, 1939-1946.	7.6	59
11	Understanding the sequence determinants of conformational switching using protein design. Protein Science, 2000, 9, 1651-1659.	7.6	47
12	Surface point mutations that significantly alter the structure and stability of a protein's denatured state. Protein Science, 1996, 5, 2009-2019.	7.6	46
13	Screening Libraries To Identify Proteins with Desired Binding Activities Using a Split-GFP Reassembly Assay. ACS Chemical Biology, 2010, 5, 553-562.	3.4	45
14	A modular approach to the design of proteinâ€based smart gels. Biopolymers, 2012, 97, 508-517.	2.4	40
15	LIVE-PAINT allows super-resolution microscopy inside living cells using reversible peptide-protein interactions. Communications Biology, 2020, 3, 458.	4.4	39
16	Protein design: Past, present, and future. Biopolymers, 2015, 104, 334-350.	2.4	38
17	All Repeats Are Not Equal: A Module-Based Approach to Guide Repeat Protein Design. Journal of Molecular Biology, 2013, 425, 1826-1838.	4.2	32
18	Design of Protein–Peptide Interaction Modules for Assembling Supramolecular Structures <i>in Vivo</i> and <i>in Vitro</i> . ACS Chemical Biology, 2015, 10, 2108-2115.	3.4	29

Lynne Regan

#	Article	IF	CITATIONS
19	The Power of Hard-Sphere Models: Explaining Side-Chain Dihedral Angle Distributions of Thr and Val. Biophysical Journal, 2012, 102, 2345-2352.	0.5	27
20	Fabrication of Modularly Functionalizable Microcapsules Using Protein-Based Technologies. ACS Biomaterials Science and Engineering, 2016, 2, 1856-1861.	5.2	23
21	Random close packing in protein cores. Physical Review E, 2016, 93, 032415.	2.1	21
22	NextGen protein design. Biochemical Society Transactions, 2013, 41, 1131-1136.	3.4	18
23	PAINT using proteins: A new brush for superâ€resolution artists. Protein Science, 2020, 29, 2142-2149.	7.6	17
24	Analyses of protein cores reveal fundamental differences between solution and crystal structures. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1154-1161.	2.6	13
25	Facile Protein Immobilization Using Engineered Surface-Active Biofilm Proteins. ACS Applied Nano Materials, 2018, 1, 2483-2488.	5.0	12
26	Routes to DNA Accessibility: Alternative Pathways for Nucleosome Unwinding. Biophysical Journal, 2014, 107, 384-392.	0.5	10
27	Understanding the physical basis for the sideâ€chain conformational preferences of methionine. Proteins: Structure, Function and Bioinformatics, 2016, 84, 900-911.	2.6	10
28	Flat Drops, Elastic Sheets, and Microcapsules by Interfacial Assembly of a Bacterial Biofilm Protein, BslA. Langmuir, 2017, 33, 13590-13597.	3.5	10
29	Void distributions reveal structural link between jammed packings and protein cores. Physical Review E, 2019, 99, 022416.	2.1	9
30	Reads meet rotamers: structural biology in the age of deep sequencing. Current Opinion in Structural Biology, 2015, 35, 125-134.	5.7	6
31	A designed repeat protein as an affinity capture reagent. Biochemical Society Transactions, 2015, 43, 874-880.	3.4	5
32	Equilibrium transitions between side-chain conformations in leucine and isoleucine. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1488-1499.	2.6	5
33	Designed Proteins as Novel Imaging Reagents in Living <i>Escherichia coli</i> . ChemBioChem, 2016, 17, 1652-1657.	2.6	5
34	A threonine zipper that mediates protein–protein interactions: Structure and prediction. Protein Science, 2018, 27, 1969-1977.	7.6	5
35	Using physical features of protein core packing to distinguish real proteins from decoys. Protein Science, 2020, 29, 1931-1944.	7.6	4
36	Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level. Expert Review of Proteomics, 2016, 13, 481-493.	3.0	3

Lynne Regan

#	Article	IF	CITATIONS
37	Rational Design and Self-Assembly of Coiled-Coil Linked SasG Protein Fibrils. ACS Synthetic Biology, 2020, 9, 1599-1607.	3.8	3
38	Intensification: A Resource for Amplifying Population-Genetic Signals with Protein Repeats. Journal of Molecular Biology, 2017, 429, 435-445.	4.2	2
39	Reply to: Comment on "Revisiting the Ramachandran plot from a new angle― Protein Science, 2011, 20, 1774-1774.	7.6	1
40	Core packing of wellâ€defined Xâ€ray and <scp>NMR</scp> structures is the same. Protein Science, 2022, 31, .	7.6	1