
Lubica Dudakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9440455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine, 2020, 22, 1235-1246.	2.4	92
2	Changes in lysyl oxidase (LOX) distribution and its decreased activity in keratoconus corneas. Experimental Eye Research, 2012, 104, 74-81.	2.6	83
3	Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2. American Journal of Human Genetics, 2016, 98, 75-89.	6.2	70
4	Antisense Therapy for a Common Corneal Dystrophy Ameliorates TCF4 Repeat Expansion-Mediated Toxicity. American Journal of Human Genetics, 2018, 102, 528-539.	6.2	59
5	Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4. American Journal of Human Genetics, 2018, 102, 447-459.	6.2	45
6	A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Communications Biology, 2021, 4, 266.	4.4	36
7	Validation of rs2956540:G>C and rs3735520:G>A association with keratoconus in a population of European descent. European Journal of Human Genetics, 2015, 23, 1581-1583.	2.8	34
8	The impairment of lysyl oxidase in keratoconus and in keratoconus-associated disorders. Journal of Neural Transmission, 2013, 120, 977-982.	2.8	33
9	Heterozygous deletions at the ZEB1 locus verify haploinsufficiency as the mechanism of disease for posterior polymorphous corneal dystrophy type 3. European Journal of Human Genetics, 2016, 24, 985-991.	2.8	33
10	The OV-TL 12/30 Clone of Anti-cytokeratin 7 Antibody as a New Marker of Corneal Conjunctivalization in Patients with Limbal Stem Cell Deficiency. , 2011, 52, 5892.		31
11	Identification of Six Novel Mutations in <i>ZEB1</i> and Description of the Associated Phenotypes in Patients with Posterior Polymorphous Corneal Dystrophy 3. Annals of Human Genetics, 2015, 79, 1-9.	0.8	29
12	Replication of SNP associations with keratoconus in a Czech cohort. PLoS ONE, 2017, 12, e0172365.	2.5	22
13	Phenotypic features of CRB1-associated early-onset severe retinal dystrophy and the different molecular approaches to identifying the disease-causing variants. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1833-1839.	1.9	19
14	IPSC-Derived Corneal Endothelial-like Cells Act as an Appropriate Model System to Assess the Impact of <i>SLC4A11</i> Variants on Pre-mRNA Splicing. , 2019, 60, 3084.		18
15	Paraproteinemic keratopathy associated with monoclonal gammopathy of undetermined significance (<scp>MGUS</scp>): clinical findings in twelve patients including recurrence after keratoplasty. Acta Ophthalmologica, 2019, 97, e987-e992.	1.1	13
16	Macular corneal dystrophy and associated corneal thinning. Eye, 2014, 28, 1201-1205.	2.1	11
17	The presence of lysyl oxidase-like enzymes in human control and keratoconic corneas. Histology and Histopathology, 2016, 31, 63-71.	0.7	11
18	ls copper imbalance an environmental factor influencing keratoconus development?. Medical Hypotheses, 2015, 84, 518-524.	1.5	10

LUBICA DUDAKOVA

#	Article	IF	CITATIONS
19	Novel <i>TGFBI</i> mutation p.(Leu558Arg) in a lattice corneal dystrophy patient. Ophthalmic Genetics, 2016, 37, 473-474.	1.2	10
20	Detailed Assessment of Renal Function in a Proband with Harboyan Syndrome Caused by a Novel Homozygous <i>SLC4A11 </i> Nonsense Mutation. Ophthalmic Research, 2015, 53, 30-35.	1.9	9
21	Segregation of aÂnovel p.(Ser270Tyr) MAF mutation and p.(Tyr56â^—) CRYGD variant in a family with dominantly inherited congenital cataracts. Molecular Biology Reports, 2017, 44, 435-440.	2.3	9
22	Schnyder corneal dystrophy and associated phenotypes caused by novel and recurrent mutations in the UBIAD1 gene. BMC Ophthalmology, 2018, 18, 250.	1.4	9
23	Corneal Endothelial Findings in a Czech Patient with Compound Heterozygous Mutations inKERA. Ophthalmic Genetics, 2014, 35, 252-254.	1.2	8
24	The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3 molecular diagnosis. Experimental Eye Research, 2019, 182, 160-166.	2.6	8
25	A novel missense mutation in <i>LIM2</i> causing isolated autosomal dominant congenital cataract. Ophthalmic Genetics, 2020, 41, 131-134.	1.2	8
26	<i><scp>OPA</scp>1</i> analysis in an international series of probands with bilateral optic atrophy. Acta Ophthalmologica, 2017, 95, 363-369.	1.1	7
27	Early detection of bilateral cataracts in utero may represent a manifestation of severe congenital disease. American Journal of Medical Genetics, Part A, 2016, 170, 1843-1848.	1.2	6
28	Comprehensive phenotypic and functional analysis of dominant and recessive <i>FOXE3</i> alleles in ocular developmental disorders. Human Molecular Genetics, 2021, 30, 1591-1606.	2.9	6
29	Brittle cornea syndrome: Disease-causing mutations in ZNF469 and two novel variants identified in a patient followed for 26 years. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2020, 164, 183-188.	0.6	6
30	Copper in Keratoconic Corneas. Cornea, 2017, 36, e14-e14.	1.7	5
31	Active transforming growth factor-β2 in the aqueous humor of posterior polymorphous corneal dystrophy patients. PLoS ONE, 2017, 12, e0175509.	2.5	5
32	Familial Limbal Stem Cell Deficiency: Clinical, Cytological and Genetic Characterization. Stem Cell Reviews and Reports, 2018, 14, 148-151.	5.6	4
33	Analysis of <i><scp>KERA</scp></i> in four families with cornea plana identifies two novel mutations. Acta Ophthalmologica, 2018, 96, e87-e91.	1.1	4
34	CUGC for posterior polymorphous corneal dystrophy (PPCD). European Journal of Human Genetics, 2020, 28, 126-131.	2.8	4
35	Clinical and Genetic Study of X-Linked Juvenile Retinoschisis in the Czech Population. Genes, 2021, 12, 1816.	2.4	4
36	Coincidental Occurrence of Schnyder Corneal Dystrophy and Posterior Polymorphous Corneal Dystrophy Type 3. Cornea, 2019, 38, 758-760.	1.7	3

LUBICA DUDAKOVA

#	Article	IF	CITATIONS
37	Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant. Journal of Ophthalmology, 2020, 2020, 1-9.	1.3	3
38	Non-Penetrance for Ocular Phenotype in Two Individuals Carrying Heterozygous Loss-of-Function ZEB1 Alleles. Genes, 2021, 12, 677.	2.4	3
39	Posterior corneal vesicles are not associated with the genetic variants that cause posterior polymorphous corneal dystrophy. Acta Ophthalmologica, 2022, 100, .	1.1	3
40	SD-OCT imaging as a valuable tool to support molecular genetic diagnostics of Usher syndrome type 1. Journal of AAPOS, 2018, 22, 312-314.e3.	0.3	2
41	Hereditary hyperferritinemia-cataract syndrome in three Czech families: molecular genetic testing and clinical implications. Journal of AAPOS, 2020, 24, 352.e1-352.e5.	0.3	2
42	Leber Hereditary Optic Neuropathy. Ceska A Slovenska Neurologie A Neurochirurgie, 2017, 80/113, 534-544.	0.1	2
43	Novel diseaseâ€causing variants and phenotypic features of Xâ€linked megalocornea. Acta Ophthalmologica, 2021, , .	1.1	1
44	Congenital fibrosis of the extraocular muscles in a Czech family and its molecular genetic cause. Ceska A Slovenska Neurologie A Neurochirurgie, 2019, 82/115, 561-566.	0.1	0
45	Molecular Genetic Cause of Achromatopsia in Two Patients of Czech Origin. Ceska A Slovenska Oftalmologie, 2019, 75, 272-276.	0.2	0
46	Should Patients with Kearns-Sayre Syndrome and Corneal Endothelial Failure Be Genotyped for a TCF4 Trinucleotide Repeat, Commonly Associated with Fuchs Endothelial Corneal Dystrophy?. Genes, 2021, 12, 1918.	2.4	0